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Abstract

Decision making is a fundamental aspect of artificial intelligence (AI). The ability to

make sensible decisions and to reason about these decisions is a necessary require-

ment to achieve any level of autonomy. There are many real-world AI applica-

tions that use decision making, such as routing and pathfinding, managing auto-

mated warehouses (e.g., Amazon’s warehouses), medical treatments, autonomous

(self-driving) cars, manufacturing (metal bending, submarine/aircraft assembly, etc.),

smart oil drilling systems, cognitive assistants, cyber security, web service composi-

tion, space exploration (e.g., Mars rovers), creating animation films, playing games,

and many more. For most interesting problems, it is impossible to explore all possi-

ble decisions and their repercussions within a feasible amount of time, especially in

cases where one decision affects subsequent decisions (sequential decision making).

Nonetheless, it is of great importance to be able to solve such problems. Therefore,

a common practice is to limit the available time for making a decision (reasoning).

As a result, algorithms that aim to solve such problems have a very limited time for

computation after which they need to choose the decision that they believe would

result in the best outcome. Making better decisions would improve a broad range of

applications. Thus, it is very desirable to improve the way AI algorithms utilize the

time available for reasoning to produce better decisions.

Search and planning algorithms solve decision-making problems by looking ahead

and modeling possible future courses of action. This lookahead is structured as a so-

called search tree. The root of a search tree represents the initial state of the problem

being solved. The successors of a state are all states that can be reached by performing

one action (corresponding to making a single decision) from that state. Figure 1

shows a partial search tree for solving a 3× 3×3 Rubik’s cube, where each state is

a position of the cube and an action is a rotation of the cube once in any direction.
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Abstract

Search algorithms traverse the search tree (perform search) in order to find a goal

state, which is a solution to the problem (e.g., a fully arranged Rubik’s cube). Since

the search tree faithfully represents the problem being solved, paths that lead to a

solution in the search tree (simulation) can be traversed in the real world to solve the

actual problem. There are different settings under which search algorithms operate,

however, they share the most important challenge of how to spend the computational

effort (e.g., which part of the search tree to explore) in order to find solutions quickly.

Figure 1: Partial search tree for a Rubik’s cube problem.

Metareasoning is a core idea in AI that captures the essence of being both human-

like and intelligent. The idea is that much can be gained by thinking (reasoning)

about one’s own thinking. In the context of search and planning, metareasoning in-

volves making explicit decisions about computation steps, by comparing their ‘cost’

in computational resources, against the gain they can be expected to make towards

advancing the search for a solution (or plan), and thus making better decisions. To ap-

ply metareasoning, a meta-level problem needs to be defined and solved with respect

to a specific framework or algorithm. In some cases, these meta-level problems can

also be very hard to solve (sometimes even harder than the original search problem).

Yet, even a fast-to-compute approximation of meta-level problem solutions can yield

good results and improve the algorithms to which they are applied.

This dissertation focuses on the development and evaluation of different meta-

reasoning techniques, tailored for different problem settings, designed to improve a

variety of search, planning and scheduling algorithms.
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Introduction

Artificial intelligence (AI) applications are designed for many different environments.

As a result, there are various settings under which decision-making algorithms need

to operate. In some cases, problems are simple enough to be completely solved (ei-

ther optimally or within a constant bound from the optimal solution) in feasible time.

Then, the solution (sequence of actions) can be fully executed in the real world. In

other cases, problems induce deadlines which decision-making algorithms need to

obey. For example, some decisions can be associated with time constraints, like de-

ciding to take a train at a specific hour or to visit a place with limited opening hours.

In these cases, decision-making algorithms need to carefully decide how to spend

their computational effort, as the deadlines of some actions (decisions) can expire.

Finally, there are cases in which deadlines must be imposed on algorithms solely

to make them act in real-time. This restriction corresponds to the “finitary predica-

ment” introduced by Cherniak 1986, which states that humans have a limit on their

cognitive capability and available time. Likewise, agents (algorithms) have limited

computational resources and the time which is available to them to make decisions

is limited. For example, even for a simple problem such as a standard 3× 3×3 Ru-

bik’s cube there are ≈ 4.3× 1019 different possible configurations (states of the cube).

Algorithms cannot completely explore such a vast space of possibilities (search tree)

to find an optimal solution before taking any action (making a decision) in the real

world, as the search for such a solution takes an immense amount of time with the

computational capabilities available today (or in the foreseeable future). Moreover,

there are much more complicated real-life problems, or even games in which the state

space is greater by many orders of magnitude. For example, the number of states

in popular real-time strategy game StarCraft is conservatively estimated to be 101685

(Ontañón et al. 2013). In comparison, the number of particles in the universe is esti-
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mated to be between 1080 and 10100. Therefore, there are many interesting problems

for which there will likely never be sufficient computational resources for algorithms

to solve optimally in feasible time. Thus, algorithms which aim to solve such prob-

lems are given a limited time to consider each decision (action), which they use to

explore a small part of the search tree by performing a lookahead from the current

state and estimating the value of descendant states. When the time for search has run

out, these algorithms commit to a decision based on the value estimations obtained

during the search, and act in the real world. The main challenges for these algorithms

are to decide which part of the search tree to explore and which action to take when

the time for reasoning (search) runs out.

Metareasoning (sometimes called metacognition) is the act of deliberating about

one’s own process of thought. This concept has been studied for many years, as

early as the work of the Greek philosopher Aristotle (384–322 BC) (Colman 2015). In

the context of AI systems, agents, and algorithms, metareasoning is a deliberation

regarding changes in the integral (computational) state. Meta-level algorithms aspire

to maximize the expected utility of solutions, also considering deliberation costs (also

known as “type II rationality”, (Good 1971)); or equivalently, to optimally utilize the

available (limited) computational resources and time in order to improve the quality

of decisions.

A prominent approach to metareasoning is called rational metareasoning (Russell

and Wefald 1991). In this framework, computations are treated as actions. This in-

duces a meta-level selection problem of choosing the best action (computation) at each

step. The decision of which computational action to take is made without knowing

the actual outcome of the computations. Thus, computations are treated as stochastic

actions, even in cases when their outcome is deterministic. Therefore, actions can be

evaluated based on their (estimated) expected utility. The cost of an action is pro-

portional to the resources it requires. Russell and Wefald 1991 defined a net value of

computation (which is similar to Howard 1966’s value of information) as the intrinsic

utility of the computation minus the cost of the computation (the cost of computation

should be in the same units as the utility). The action with the highest net value of

computation is selected by the meta-level. While the rational metareasoning approach

is very methodological, it is intractable to compute the value of information in general.

2



1. Metareasoning in MCTS

Moreover, the overhead of meta-level problems should be low, as the time required

to solve meta-level problems comes at the expense of the time available for reasoning

(e.g., less time for performing a lookahead). Thus, in order to practically implement

this framework Russell and Wefald 1991 had to make many simplifying assumptions.

For example, they only consider the utility of a single computational action at a time.

Furthermore, there are problem settings which are hard, or even impossible to define

using this framework. For example, a setting in which deadlines are induced by real

constraints, as briefly discussed above, cannot be directly expressed in the rational

metareasoning framework.

This research focuses on developing and applying metareasoning techniques for

a variety of interesting problem settings. This demonstrates the versatility of meta-

reasoning, as well as the potential of meta-level techniques to improve the decision-

making abilities of existing algorithms and to adapt them to new settings. Solving

meta-level problems is notoriously hard. Moreover, every second spent on metarea-

soning is less time available for reasoning (i.e., searching, planning, etc.). Nonethe-

less, this research shows that by considering the right meta-level problems and finding

quick approximations to them, the utility of algorithms can be considerably improved.

The different settings and the contributions of this research in each setting are sum-

marized below.

1 Metareasoning in MCTS

Monte-Carlo tree search (MCTS) is an algorithmic schema commonly used to search

huge trees, especially when a good heuristic is not available (Browne et al. 2012).

In general, MCTS grows a search tree, using four phases: node-selection, node-

expansion, simulation, and backup. When the time for search is over, the action

which leads to the most-promising child of the root (the one with the highest esti-

mated utility, denoted as α) is performed. The scheme used for node-selection es-

sentially controls the search by deciding where to focus the computational effort. A

popular node-selection approach is the Upper Confidence Bounds for Trees (UCT,

Kocsis and Szepesvári 2006) which aims to minimize cumulative regret and "balanc-

ing exploration and exploitation". However, it was shown that minimizing cumulative
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regret is actually inappropriate for move selection and that the simple regret and value

of information (VOI) criteria are more appropriate and result in more efficient search

(Tolpin and Shimony 2012; Feldman and Domshlak 2014). In essence, the VOI of se-

lecting nodes for simulation is proportional to the probability of changing α (either

by increasing the estimated utility of some other child of the root or by decreasing the

estimated utility of α) as a result of running simulation on these nodes. VOI can be

defined in different ways, each way uses different assumptions which induce different

computational overheads. The two previous node-selection schemes that are based on

VOI are MGSS (Russell and Wefald 1991) and “blinkered” (Tolpin and Shimony 2012),

both schemes are different implementations of the rational metareasoning framework

under different sets of assumptions. However, both schemes only consider the VOI of

individual nodes; this is a very myopic approach that often prematurely commits to

α.

Our work in Paper A, (Shperberg, Shimony, and Felner 2017) attempts to relax

this myopic assumption. We define a batch value of perfect information (BVPI) as

a generalization to the value of computation proposed by Russell and Wefald. We

show that computing BVPI is NP-hard, but it can be approximated in polynomial

time. In addition, we propose a node-selection scheme that intelligently find sets of

nodes with high BVPI. Finally, we apply our BVPI based selection-scheme to existing

MCTS-based applications and empirically show that our methods outperform existing

node-selection techniques in different scenarios.

In Paper B (Shperberg and Shimony 2017) we examine theoretical properties of

VOI when aiming to select an item (or action) of unknown utility. This model as-

sumes that measurements (possibly noisy) of item values prior to selection are al-

lowed, at a known cost. The goal is to optimize the overall sequential decision process

of measurements and selection. Unfortunately, this decision problem is intractable in

general. Yet, it is important to be able to solve, at least approximately, as it has numer-

ous potential applications. This paper analyses cases where the value of information

(VOI) is submodular and supermodular, and suggests how to use these properties to

approximate optimal batch measurement policies.
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2 Situated Temporal Planning

Agents that plan and act in the real world must deal with the fact that time passes as

they are planning. For example, an agent that needs to get to the airport may have

two options: take a bus or take a train. Each of these options can be thought of as a

partial plan to be elaborated into a complete plan that can be executed. Furthermore,

consider a second example in which there are two partial plans, each estimated to

require four minutes of computation to elaborate into complete plans. If only five

minutes remain until both plans expire, then we would want the planner to allocate

all its remaining effort to one candidate plan, rather than to fail on both.

Cashmore et al. 2018 recognized the problem of node expiration in the context of

temporal planning with timed initial literals (TIL), where the TILs occur at times that

are relative to when planning starts, rather than to when execution starts. However,

their approach is relatively superficial and was used merely to prune nodes that be-

come infeasible based on their latest start time estimation. Such a planner fails on the

latter example.

In Paper C (Shperberg, Coles, Cserna, et al. 2019) we define the problem of select-

ing on which nodes to focus during planning as a meta-level problem called Allocating

Effort when Actions Expire (AE2). AE2 abstracts away from the planning problem and

merely assumes n independent processes, each modeled by a distribution over wall

clock times denoting the deadline, and a distribution over the required time allocation

to complete computation. The objective of AE2 is to schedule processing time among

the n processes so that the probability that at least one process will find a solution

before its deadline is maximized. We have analyzed properties of the AE2 problem,

developed a pseudo-polynomial time solution for the special case of known deadlines,

and proposed an effective greedy algorithm for the general case. In addition, Paper D

(Shperberg, Coles, Karpas, Shimony, et al. 2020) tackles the extended problem (called

ACE2) where processes (plans) have associated costs, and the aim is to minimize the

expected cost. Finally, in Paper E (Shperberg, Coles, Karpas, Ruml, et al. 2021) we

show how our greedy scheme for the AE2 problem can be used within a real situ-

ated temporal planner (OPTIC). An empirical evaluation suggests that the modified

planner provides state-of-the-art results on problems where external deadlines play a
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significant role.

3 Algorithm and Instance Selection

In the context of multiple agents sharing resources, metareasoning can be used for

dividing the shared resources among all agents. In Paper F (Shperberg, Shimony,

and Yehezkel 2019), we consider a set of black-box agents/algorithms (each with its

own strengths and weaknesses) attempting to solve a pool of optimization problem

instances. Unlike standard algorithm selection settings in which there is an individual

time limit for each instance, here we have a global time limit for the entire set of in-

stances. The goal is to maximize the sum of solution qualities, where each instance can

be solved more than once, but only the best solution counts. Thus, a policy consists of

a pair of problem instance and algorithm to execute at any given moment. The origi-

nal motivation for this work was combining multiple programs that compete in the AI

Angry Birds competition. In this competition, agents have 30 minute to play 8 unseen

levels of the Angry Birds video game, with total score being the sum of level scores.

We formulate the problem as a selection problem and show that it is NP-hard even

when the time and score performance profiles (distributions) of agents on levels are

known and independent. Nonetheless, we develop an approximation algorithm for

one simple case, as well as faster greedy algorithm for the general case which works

well empirically on data collected from the Angry Birds game. Then, we combine this

greedy algorithm with a Bayesian learning scheme for obtaining and updating the

performance profiles. An empirical evaluation using the competition settings of past

years suggests that the combined algorithm outperforms the individual agents.

4 Bidirectional Heuristic Search

In bidirectional heuristic search (Bi-HS) we are given an implicit graph, a start vertex s,

a goal vertex g, and a heuristic which estimates the cost of the least-cost path between

vertices. The aim is to find a least-cost path between s and g. Bi-HS algorithms

maintain two search frontiers, one from s and one from g, and need to connect them

to find a solution.
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A fundamental question in Bi-HS is “how much of the search effort to invest in each

frontier?”. In an attempt to answer this question, Eckerle et al. 2017 investigated which

nodes must be expanded by any Bi-HS algorithm in order to prove solution optimal-

ity. While in unidirectional search there is a specific set of nodes for every problem

instance that must be expanded (Dechter and Pearl 1985), in Bi-HS there is no such

unique set. Instead, for every problem instance there are pairs of nodes (called must-

expand pairs), one of which must be expanded. Each such pair contains a node from

the forward frontier and a node from the backward frontier. Thus, these pairs induce

many sets (of different sizes) of nodes, from which one set needs to be fully expanded.

Each set corresponds to a division of the search effort between the forward and back-

ward frontiers. Aiming to find a small set to expand, Chen et al. 2017 converted the

problem of expanding must-expand pairs to a problem of finding a vertex cover in an

abstract graph which they called GMX. The minimal vertex cover (MVC) of GMX is the

minimal number of node expansions required to prove optimality of solutions. While

GMX can only be fully constructed in post analysis, it is possible to obtain some of its

edges during the search. NBS (Chen et al. 2017) is a prominent Bi-HS algorithm which

always expands both nodes of each such edge, in order to get a 2×MVC bound on the

number of expansions. Paper G (Shperberg, Felner, Sturtevant, et al. 2019) presents

other ways to exploit GMX structure for node expansion. Instead of choosing a sin-

gle edge from GMX our algorithm, called DVCBS, maintains a dynamic sub-graph of

GMX (denoted as DGMX) using the frontier nodes. Then, DVCBS computes an MVC

for this DGMX (in linear time) and uses it to choose which nodes to expand. DVCBS

faces a tradeoff. On the one hand, constructing a DGMX and computing its MVC of-

ten is more accurate and leads to better search results, as new frontier nodes become

available. On the other hand, these operations are computationally expensive. This

tradeoff induces a metareasoning problem. Finally, in Paper H (Shperberg, Felner,

Shimony, et al. 2019) we develop a method for enabling existing algorithm to benefit

from GMX structure by incorporating this information into the heuristic function. Not

only do algorithms that use the enhanced heuristic require less node expansions to

solve problems, some of them also benefit from desirable theoretical properties gained

only by using this enhanced heuristic.
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Abstract

This paper focuses on the selection phase of Monte-Carlo Tree Search (MCTS). We define batch value

of perfect information (BVPI) in game trees as a generalization of value of computation as proposed

by Russell and Wefald, and use it for selecting nodes to sample in MCTS. We show that computing the

BVPI is NP-hard, but it can be approximated in polynomial time. In addition, we propose methods

that intelligently find sets of fringe nodes with high BVPI, and quickly select nodes to sample from these

sets. We apply our new BVPI methods to partial game trees, both in a stand-alone set of tests, and as

a component of a full MCTS algorithm. Empirical results show that our BVPI methods outperform

existing node-selection methods for MCTS in different scenarios.

1 Introduction

Monte-Carlo tree search (MCTS) algorithms, such as the UCT algorithm and its many

variants (Browne et al. 2012), are state-of-the-art in numerous domains. A crucial

phase in MCTS is the selection phase where a fringe node of the partially expanded

tree is selected for sampling (initiating rollouts). Although UCT is a prominent ap-

proach, its node-selection criterion, based on optimization of cumulative regret, is actu-

ally inappropriate for move selection: it was shown in (Hay et al. 2012; Feldman and

Domshlak 2013) that simple regret and value of information (VOI) criteria are more

appropriate, and result in more efficient search. A scheme similar to the “value of

computation” of (Russell and Wefald 1991b; Russell and Wefald 1991a) can be used

to define the VOI (see Section 2.2). Since a single rollout cannot find the true utility

of a node, the “blinkered” scheme in (Hay et al. 2012) provided bounds on the VOI

for a number of samples at a node. Despite its success, the “blinkered” scheme has

two shortcomings. First, it applies only at the first level of the tree. Second, it only

considers the VOI of individual nodes.

Numerous authors attempted to optimize VOI for multiple sources of informa-

tion. Such an optimization is intractable in general (Reches et al. 2013; Krause and

Guestrin 2011; Krause and Guestrin 2009). Approximations thereof using myopic

assumptions and greedy search are a common way to alleviate this problem (Krause

and Guestrin 2011). The myopic-greedy schemes have a basis in theory, due to the fact

that if the VOI is submodular, greedy algorithms are provably near-optimal (Krause
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and Guestrin 2009; Krause and Guestrin 2011; Papachristoudis and Fisher III 2012).

However, the VOI is not submodular in general (Krause and Guestrin 2009), thus

myopic-greedy metareasoning can be far from optimal.

We address the above shortcomings by defining batch value of perfect informa-

tion (BVPI) of multiple nodes in game trees, as a generalization of value of computa-

tion (Russell and Wefald 1991a). First, we examine the computational complexity of

BVPI, and show a deterministic approximation (Section 3). Second, we introduce al-

gorithmic variants that quickly choose a set of nodes S with high BVPI, and evaluate

them on trees generated by MCTS algorithms (Section 4). Third, we present variants

that quickly select nodes in S for rollouts. We provide empirical evidence of improved

rollouts effectiveness without incurring too much overhead. Finally, we show how all

ideas can be plugged into any MCTS algorithm by modifying only its selection phase

(Section 5). Experimental results (Section 6) on two disparate domains show that

our methods significantly outperform the node selection schemes used by UCT and

“blinkered”, as well as that of an adaptation of MGSS* (Russell and Wefald 1991a) to

MCTS.

2 Background

This paper uses techniques from Monte-Carlo tree search, value of computation (value

of information) in game trees, and conspiracy numbers. We briefly examine each

below.

2.1 Monte-Carlo Tree Search

Monte-Carlo tree search (MCTS) is an algorithmic schema commonly used to search

huge trees. In general, MCTS grows a search tree, using four phases: node selection,

node expansion, simulation (also called rollouts or sampling), and updating (also

called backup). Algorithm 1 depicts this the MCTS, following (Browne et al. 2012)).

TreePolicy() consists of the node selection and expansion, DoRollout() performs

simulation (sampling) from the selected node v. The computation budget (line 2) can

be the number of rollouts, a time limit, etc. There are numerous schemes for deciding

which nodes to expand, which nodes to select, how to propagate updates, and how to
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Algorithm 1: Monte-Carlo Tree Search

1 function MCTS(root):

2 while computation budget not exceeded do

3 v←TreePolicy(root)

4 U ← DoRollout(v)

5 Backup(v, U)

do rollouts (See (Browne et al. 2012) for a deep survey). A popular approach for node

selection is the Upper Confidence Bounds for Trees (UCT) (Kocsis and Szepesvári

2006), which selects a node v′ repeatedly, starting from the root, down to the fringe.

At each node v, select a child v′ which maximizes the score:

UCTscore(v′) = Q(v′) + b

√
2 ln N(v)

N(v′)
(A.1)

where Q(v′) is the previous average value of v′, N(v) is the number of past visits of

v, and b is a constant. If v is a fringe node, a rollout is initiated from v.

2.2 Information Gathering in Trees

We are given a game tree T consisting of MAX, MIN, and CHANCE nodes (root r is a

MAX node). Each leaf has known utility value distribution Pv, as in Figure A.1, but its

true utility u(v) is unknown. Leaf utility distributions are assumed independent (the

commonly used “subtree independence” assumption (Russell and Wefald 1991a)).

The notation [p1 : u1, ..., pn : un] represents Pv, meaning that pi is the probability that

the true utility is ui (for all i).

Figure A.1: MIN-MAX tree with leaf utility distributions

For each leaf v of T, we can choose to perform a measurement that costs C(v),

obtaining further information about v, such as the true utility of v. Optionally, there

15



Paper A. Monte-Carlo Tree Search using Batch Value of Perfect Information

is also a budget constraint that limits the total number, or cost, of allowed measure-

ments. The problem of optimal information gathering is: what is the optimal policy of

performing measurements, and then selecting the action at the root, so as to achieve

maximum overall expected utility?

There are two standard settings of this problem. In the batch setting, all measure-

ments are made in a single batch. Only then, the decision maker gets to observe the

results of the measurements. In the sequential setting, the decision maker selects a

measurement and immediately observes the result. This is repeated until a decision

to stop is reached. In both settings, after stopping the measurement process, the de-

cision maker selects the root action that achieves the best expected utility for the tree

given all the observations.

In this section, as well as in Section 3, we assume that the distributions Pv are

given, and that the measurements are abstract operators that have a known cost and

reveal the true utility u(v). But in the context of a search algorithm, T is actually

the partially developed game tree, of which v is a fringe node. A measurement is

done by a computation, obtaining additional (usually noisy) information about v

by expanding it, or (in MCTS) by initiating additional rollouts from v. The initial

distributions Pv are obtained by heuristics, by rollouts (as in Section 5) etc.

Value of Perfect Information

Suppose that the agent has developed the tree T. If no additional measurements were

allowed, a MAX player should compute an EXPECTI-MINI-MAX value Ū(T) of the

tree, treating the utility of each leaf v of T as if it were equal to its expected value. Let

α be the child of the root which propagated Ū(T) to the root node in EXPECTI-MINI-

MAX. We call this move α the “current best” (see Figure A.1). In order not to introduce

additional notation, as far as utility distributions are concerned, we henceforth refer

to a move, and to its respective child node, interchangeably.

In a nutshell (See (Russell and Wefald 1991a)), the Value of (Perfect) Information

(VPI), (called Value of Computation in (Russell and Wefald 1991a)) is the expected gain

from picking another move βi as a result of performing the additional measurements

either under α or under βi. Let β1 be the next-best move after α, and denote by Ū(γ)

the current expected utility of any move γ. Let Sα be a set of leaves under α, and let
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pαSα
(x) be the probability density function for the utility of move α, given the utility

observations at the leaves Sα. The VPI for Sα is defined as:

VPI(Sα) =
∫ Ū(β1)

−∞
pαSα

(x)(Ū(β1)− x)dx (A.2)

Intuitively, VPI(Sα) is the gain due to preferring β1 over α because measurements

below α revealed that the new value of α (given the observations) is worse than the

current expected value of β1. Likewise, for a move βi (not the current best), let Sβi

be a set of leaves under βi, and denote by pβiSβi
(x) the probability density function

for the utility of move βi, given utility observations at leaves Sβi . Then:

VPI(Sβi) =
∫ ∞

Ū(α)
pβiSβi

(x)(x− Ū(α))dx (A.3)

The distributions in Eqs. A.2, A.3 were defined in (Russell and Wefald 1991a) for

MIN-MAX trees. Equation A.4 below is an alternative statement that incorporates

CHANCE nodes.

The MGSS* (Meta-Greedy Single-Step) scheme in (Russell and Wefald 1991a) uses

Eqs. A.2, A.3 assumes that the measured node-set S is a single node: their “single-

step assumption” of computing the value of computation under the assumption that

only one step of computation will be done before the final move decision (see the

following example). They extended the scheme into MGSS2 that estimates the value

of computation for more than one node.

Example A.1

In Figure A.1, α is the current best move, since Ū(α) = 12 > 9 = Ū(β), due

to the MIN-MAX computation in the tree, using the expected value of leaf node

distributions as their known value. For example, the value of leaf node D is taken

to be 12. Obtaining the true utility u(v) of any one leaf cannot change the move

selected by MAX. Thus, the VPI of any individual leaf node here is 0, so MGSS*

stops further computational actions. Examining value of computation for multiple

nodes under the same move (such as {F, G}) does not help in this case. But if we

measure {D, F, G}, then with probability 0.5, D will show utility 9, so B will have

utility 9 as well. With probability 0.25, both F and G will show utility 12, so C

will have a utility of 11. So with overall probability 0.125, C will be better than
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B, and MAX would change the first move to C. The set {D, F, G} has a value of

computation greater than 0, and should be measured if its cost is sufficiently low.

This paper extends VOI to consider such sets.

For any set of nodes to be measured, its value of information minus the cost of

the measurement is called the net value of information. By extension, we likewise

use the terms “net VPI” and “net BVPI” (below) to mean the appropriate type of VOI

minus measurement costs.

2.3 Conspiracy Numbers

Conspiracy numbers (McAllester 1988) denote the minimal number of nodes that

need to change their values so as to cause the tree’s value of to change to a given

value u.

Example A.2

In Figure A.2, the minimax value of the root is 10. In order to increase its value to

any u ∈ (10, 15], the minimal number of leaf nodes that need to change is 1 (node

F), thus, there is a single conspirator required. In order to increase the root’s value

to u ∈ (15, 20], the values of both E and F need to change (two conspirators), and

three conspirators are required to change it to any u > 20.

Figure A.2: Conspiracy numbers in MIN-MAX trees

Originally the idea was used to focus game tree search on such conspiracy nodes.

Although conspiracy numbers are defined for known leaf values, they are loosely

18



3. Batch Value of Information

related to the value of computation (Russell and Wefald 1991a). Generally speaking,

a conspiracy number greater than 1 (when true leaf utilities are assumed to be equal

to their expected utility as in Example A.1 and Figure A.1) indicates that MGSS*

will see a VPI of 0 for every node, whereas the value of computation for numerous

nodes may be non-zero (in which case the VPI is not submodular). In this paper we

adapt conspiracy numbers in order to find sets of nodes that have a high probability of

affecting the value at the root.

3 Batch Value of Information

We now define Batch Value of Perfect Information (BVPI). The value of computation (=VPI)

in (Russell and Wefald 1991a) was defined for nodes all under a single child of the

root. BVPI is a straightforward generalization of VPI allowing measurements at arbi-

trary sets S of leaves. Denote by US(v) the utility of node v, given that measurements

will be performed at a set of leaf nodes S. Note that before getting the actual observed

values, US(v) is a random variable. Since measurements are assumed to be perfect,

US(v) (at leaf nodes) is distributed as Pv. Denote the children of v by ch(v), the prob-

ability of a child node c of a chance node by p(c), and use appropriate predicates

(LEAF(v) is true if v is a leaf node, etc.) to denote node types. The distribution of

US(v) is defined recursively in Eq. A.4.

US(v)∼



Pv LEAF(v) ∧ v ∈ S

[1 : Ev[Pv]] LEAF(v) ∧ v /∈ S

maxc∈ch(v){US(c)} MAXnode(v)

minc∈ch(v){US(c)} MINnode(v)

∑c∈ch(v) p(c)US(c)CHANCEnode(v)

(A.4)

The batch value of perfect information (BVPI) for obtaining perfect information on a

set S of nodes is defined as follows. Denote US(β) = maxi{US(βi)}, and let pαβS(x, y)

be the joint probability density function of (US(α), US(β)) at (x, y) given the measure-

ments at S. Then:

BVPI(S) =
∫

y>x
pαβS(x, y)(y− x)dxdy (A.5)

Intuitively, BVPI(S) is the gain due to a change of best move from α to some βi,
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because observations at S revealed that the new utility of βi is better than that of α.

Note that if S is a set of leaves limited to a subtree under α then Eq. A.5 reduces to

Eq. A.2. Likewise if S is limited to a subtree under βi, in which case Eq. A.5 reduces

to Eq. A.3.

In using BVPI(S) (Eq. A.5) below, we re-write it as:

BVPI(S) =
∫

y>x
pαSα

(x)pβSβ
(y)(y− x)dxdy (A.6)

= E[max(USβ
(β)−USα

(α), 0)] (A.7)

where pβSβ
is the density function of USβ

(β), which is the same as US(β), due to

subtree independence. The first equality also follows from the subtree independence,

and the second from an algebraic manipulation of the terms.

To optimize (batch setting) information gathering using BVPI, one should find a

set of nodes S with the highest net BVPI(S). This is hard because: (1) We need to

compute the BVPI for each such set. (2) There is an exponential number of potential

subsets S of leaves of T.

3.1 Computing BVPI

Theorem A.1

Computing BVPI(S) for a given set of leaves S in expecti-mini-max trees is NP-hard.

Proof (outline): by reduction from the Partition problem (Garey and Johnson 1979)

[SP12], defined as follows. Given a multi set S of integers {S1, S2, ..., Sn} (w.l.o.g.

∑n
i=1 Si is even), is there an equal partition, i.e. a set of indices I ⊆ [1, ..., n] such that

∑i∈I Si = ∑i/∈I Si ?

The reduction uses the three-level expecti-minimax tree of Figure A.3, with two-

valued distributions at the leaves. The Si in the figure are the same numbers as in

the partition problem. By computing BVPI(S), with S being the set of all children

of the chance node, for 2 different values of u2, we can decide the partition problem,

as follows. Denote σ = ∑n
i=1

Si
2n , the desired partition sum divided by n. Before any

measurements are made, the expected utility of each uncertain leaf i is Si
4 , and thus

the expected utility Ū(v) of the chance node is σ
2 , which is less than u1 and either

value of u2. So indeed MAX chooses α. If all uncertain leaf nodes are measured, then

there is a non-zero probability that u(v) > u1, but if we also have u(v) > u2 then MIN
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3. Batch Value of Information

Figure A.3: NP-hardness of computing BVPI: reduction

will not pick the chance node, so the gain in such cases is limited by u2 − u1. Denote

BVPI(S) for the case where u2 = σ + 1
2n by B1, and for the case where u2 = σ− 1

4n by

B2. In the first case we have:

B1 = P(US(v) = σ)(σ− u1) +
P(US(v) > σ)

n

Since the Si are all integers, then σ and all possible values of US(v) are integer multi-

ples of 1
n , so P(US(v) ∈ [u1, u1 +

1
4n ]) = 0. Thus, the BVPI in the second case is:

B2 =
P(US(v) > σ− 1

4n )

4n
=

P(US(v) ≥ σ)

4n

If we can compute B1 and B2 in polynomial time, we can trivially solve for P(US(v) =

σ), which is non-zero just when the partition problem has a solution. �

Note that this reduction also implies NP-hardness of VPI (Eq. A.3), as all the un-

certain leaves are in the same subtree. However, if the utility of the leaves is bounded,

standard sampling techniques can be used to approximate BVPI(S). We show a deter-

ministic approximation result.

Theorem A.2

Given a game tree T with finite discrete distributions, the value BVPI(S) where S is a

subset of the leaves of T can be deterministically approximated within additive error

ε in time polynomial in the (explicit) description size of T, 1
ε , and utility span bound

Umax −Umin.

Proof (outline): We approximate US(v) bottom up, in a manner similar to (Cohen

et al. 2015). There, an approximate cumulative distribution (CDF) was computed for

MIN-SUM trees, in a manner that bounded the Kolmogorov distance (maxx |F′(x)−
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F(x)|) of the approximate CDF from the exact CDF. As the Kolmogorov distance is un-

helpful in our case, we use a different version of TRIM that provides the appropriate

error bound for the expected values in Eq. A.7.

Denote by FUS(v)(x) the CDF of US(v) at x. For MAX nodes we have: FUS(v)(x) =

Πc∈ch(v)FUS(c)(x) due to independence. Likewise, for MIN nodes we have: FUS(v)(x) =

1−Πc∈ch(v)(1− FUS(c)(x)). Chance nodes are weighted sums of the random variables,

so we need to use convolution, which may grow the distributions’ support exponen-

tially. To overcome this problem, we bound the support by an appropriately defined

n = f (Umax−Umin, |T|, 1
ε ) and apply a TRIM operator (see Algorithm 2) to the current

US(v), assumed to be a list of (value, probability) pairs sorted by increasing value.

Algorithm 2: TRIM left operator

1 m← |support(US(v))|; U′S(v) ← ∅;

2 head← first(US(v)); tail← rest(US(v));

3 while m > n and tail is non-empty do

4 next← first(tail);

5 if value(next) - value(head) < Umax−Umin
n then

6 prob(head)← prob(head)+ prob(next);

7 tail← rest(tail); m← m-1;

8 else

9 U′S(v) ← append(U′S(v), head);

10 head← first(tail); tail← rest(tail);

11 return append(U′S(v), tail) ;

By construction, |support(U′S(v))| ≤ n after TRIM. The error introduced by TRIM

is bounded by δ = Umax−Umin
n , i.e.: FUS(v)(x + δ) ≥ FU′S(v)

(x) ≥ FUS(v)(x) for all x.

We prove lemmas bounding combination errors: in MIN and MAX nodes errors

are added, and in CHANCE nodes at worst equal to the maximum error in the chil-

dren. The (low-order polynomial) function f can be chosen so that FUS(r)(x + ε) ≥

FU′S(r)
(x) ≥ FUS(r)(x) for all x at the root r. These inequalities imply that the Wasser-

stein distance between US(r) and U′S(r) is at most ε, thus |E[U′S(r)]− E[US(r)]| ≤ ε.

Since |support(U′S(v))| ≤ n, for all v, we can then compute the expectations in Eq.

A.7 in polynomial time. �
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Note that we can also handle continuous distributions, by discretizing them into
Umax−Umin

n values, achieving similar approximation guarantees, assuming that we can

efficiently compute their CDFs at any given point.

4 Practical Batch-selection

We now examine practical methods for choosing batches of nodes with a high net

BVPI. Here, we treat this as a stand-alone problem on a partially developed tree T. In

Section 5 we incorporate these methods into MCTS.

Optimizing the value of information was shown to be NP-hard even for one-level

trees (see, e.g. (Reches et al. 2013; Shperberg and Shimony 2017)). Thus we are forced

to introduce methods suggested by the theory, but which have no guarantees, in order

to be able to meet the extremely difficult task of actually improving the runtime or

quality of MCTS, which requires that we find node-sets with high BVPI in essentially

negligible computation time.

4.1 High-BVPI sets: Using Conspiracies

This scheme uses an idea based on the above described conspiracy numbers (McAllester

1988); it is possible to quickly detect node-sets involved in minimal conspiracies. We

desire instead a probabilistic version that can quickly detect node-sets S that have a

significant contribution to Eq. A.6, and hence should have a high net BVPI(S). Note

that we do not need to find even a nearly optimal set, it is sufficient for our search

application to find a reasonably good set, and not to return an empty set when sets

with a high net BVPI are available.

We adapt the conspiracy scheme by defining a probabilistic variant of conspiracy

numbers, and then by evaluating a modified version of Eq. A.6 where we replace

integration by maximization, using as S the entire set of leaf nodes, and US(v) as in

Eq. A.4. In MIN-MAX trees, the probability that the value of node v will increase to at

least Val if we measure nodes S is: ↑ φ(v, Val) = P(US(v) ≥ Val). Likewise the value

v will decrease to be at most Val with probability: ↓ φ(v, Val) = P(US(v) ≤ Val).

Now perform the following optimization (note the similarities with Eq. A.6), as done

within Algorithm 3.
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Algorithm 3: C-VIBES Selection Scheme

1 function SelectNodes(root):

2 foreach V ∈ V do

3 storeProbabilities(α, V)

4 foreach Node c ∈ ch(root)− {α} do

5 storeProbabilities(c, V)

6 V, V′, c← values which optimize Equation A.8

OpenList.init(α); OpenList.insert(c)

7 while OpenList not empty do

8 v← OpenList.pop()

9 if v is a fringe node then

10 S← S ∪ {v}

11 else

12 Val ←

V if v ∈ subtree of α

V′ otherwise

13 foreach c ∈ ch(v) do

14 if φ[v, Val] /∈ {0, 1} and (CHANCEnode(v) or

φ[v, Val] == φ[c, Val]) then

15 OpenList.insert(c)

16 return S

17 function storeProbabilities(v,Val):

18 foreach c ∈ ch(v) do

19 storeProbabilities(c, Val)

20 φ[v, Val]←

P̂(US(v) ≤ Val) if v ∈ subtree of α

P̂(US(v) ≥ Val) otherwise

max
V′>V

((V′ −V)(↓ φ(α, V) max
c∈ch(r)−{α}

↑ φ(c, V′)) (A.8)

The P̂ in the algorithm are probabilities approximated as in Theorem A.2, except
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that for CHANCE nodes, our BVPI approximation is still too slow for the desired

real-time performance, so we use: P̂(US(v) ≤ Val) ≈ ∑c∈ch(v) p(c)P(US(c) ≤ Val)

instead of convolution in our implementation of the conspiracy scheme. Example A.3

below depicts one such node-set recovery instance.

Batch Selection Algorithms

We evaluate three batch selection algorithms:

(1) Full tree (FT): Exhaustively compute net BVPI (using BVPI approximation algo-

rithm from Theorem A.2) for every subset S of T’s leaves; pick S with the highest net

BVPI.

(2) Greedy (G): Start S as an empty set. Estimate the net VPI for every leaf node not

in S, and add the best to S. Repeat until no node has a positive net VPI.

(3) Conspiracy (C): The conspiracy-based scheme described above. As the optimiza-

tion in Eq. A.8 is still too slow to perform in real time for MCTS, our implementation

optimizes over only a few possible values of V, V′ in Eq. A.8. In the experiments we

used the value set:

V = {0.8Ū(α), 0.9Ū(α), 0.95Ū(α), Ū(α), 1.05Ū(α)}

Example A.3

In figure A.1, α is the current best move, since Ū(α) = 12 > 9 = Ū(β). The leaf

node set S = {D, F, G} is the only one to potentially change the best action from

α to β, thus the only set with BVPI(S) > 0. FT estimates the BVPI exhaustively,

and thus will correctly return S. The Greedy scheme suffers myopic assumptions

like MGSS*. Recall that in this figure, the VPI of every individual node is 0, hence,

Greedy will terminate without finding S and return an empty set. The Conspiracy

scheme optimizes Equation A.8 in order to find a batch to sample. The optimal

solution is achieved with V′ = 11 and V = 9. Using these values, ↓ φ(α, V =

9) = 0.5, obtained by picking D, and ↑ φ(β, V′ = 11) = 0.5 obtained by picking

both F and G. Therefore, Conspiracy returns {D, F, G} as desired. Note that the

values V′ = 11 and V = 9 are outside the range V used by our actual Conspiracy

implementation for optimizing Equation A.8. Despite that, using V = 0.8Ū(α) = 9.6
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and V′ = 0.9Ū(α) = 10.8, the implementation still finds and returns the correct

node-set S = {D, F, G}.

4.2 Experiments on Game Trees

CTP StarCraft

#
Tree

Size

Tree

Height

Max

BF

Full Tree Conspiracy Greedy
#

Tree

Size

Tree

Height

Max

BF

Full Tree Conspiracy Greedy

BVPI T (ms) BVPI T (ms) BVPI T (ms) BVPI T (ms) BVPI T (ms) BVPI T (ms)

1 30 9 3 359 217 296 0.28 92 0.28 11 30 4 20 283 198 234 0.25 205 0.24

2 45 13 4 453 443 382 0.29 215 0.28 12 45 4 20 356 413 356 0.25 356 0.25

3 61 15 3 126 1868 103 0.29 19 0.29 13 60 6 20 326 1719 312 0.28 283 0.28

4 106 25 4 527 356872 480 0.34 319 0.34 14 100 11 20 147 299814 147 0.33 105 0.31

5 125 20 6 812 7129870 681 0.36 681 0.35 15 125 11 20 63 7088815 63 0.36 63 0.36

6 153 42 5 219 20676623 219 0.4 71 0.38 16 150 12 20 96 19938631 71 0.39 0 0.38

7 1018 33 6 T/O T/O 113 0.78 0 0.73 17 1000 23 20 T/O T/O 33 0.72 33 0.70

8 3077 29 6 T/O T/O 65 1.89 13 1.88 18 3000 28 20 T/O T/O 116 1.85 42 1.82

9 6820 37 5 T/O T/O 53 4.2 0 3.9 19 7000 42 20 T/O T/O 25 4.33 7 4.01

10 15321 69 7 T/O T/O 277 8.5 12 8 20 15000 79 20 T/O T/O 47 8.41 0 7.96

Table A.1: BVPI in Trees Generated by UCTO in the CTP (left) and in StarCaft (right)

To get a realistic game tree, we used a snapshot of a partially developed game tree

T′ from a MCTS. T′ is cut off so that its fringe nodes become the leaves of our tree T.

Values previously returned by rollouts form an empirical distribution at each fringe

node (now leaf) v; this distribution is assumed to be the actual distribution Pv of leaf

node utilities. E.g. if we had 2 rollouts with value 10, and 6 rollouts with value 20,

(from v) then we set Pv = [0.25 : 10, 0.75 : 20]. Measurement costs assumed are given

by Equation A.9 (Sec. 5). Trees were from 2 domains.

In the (stochastic) Canadian traveler problem (Papadimitriou and Yannakakis 1991)

we are given a weighted graph G = (V, E, w) where w : E→ R+. Each edge e ∈ E, has

a known probability p(e) of being blocked. The agent starts at vertex s ∈ V, and must

reach a vertex t ∈ V. Whether an edge is blocked becomes known upon reaching an

incident vertex. The problem is to find a policy that minimizes the expected travel

distance (sum of w) before reaching t (the utility here is minus the distance). The de-

cision version of the stochastic CTP is PSPACE complete (Fried et al. 2013). (Eyerich

et al. 2010) present an effective UCT-based algorithm called UCTO which randomly

searches the belief states in the given program instance, and generates EXPECTI-MAX

trees.
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StarCraft is a Real Time Strategy (RTS) game by Blizzard Entertainment, a popu-

lar AI competition and research platform. Our StarCraft experiments used code by

(Justesen et al. 2014) that attempts to optimize StarCraft battles against an opposing

team. Their code uses a UCT-based MCTS algorithm that generates MAX-MIN trees

during the search.

Approximate net-BVPI and CPU time for 10 instances of appear in Table A.1(left)

for CTP and in Table A.1(right) for StarCraft. In both domains, FT timed out (T/O

denotes timing out after 6 hours) in large instances. Greedy is the fastest, but the BVPI

it achieved was only 64% of that of FT on average (over instances where FT did not

time out). Conspiracy had the best balance between time and effectiveness. Its BVPI

was 89% of that of FT on average, and was only slightly slower (2%) than Greedy. In

fact, the conspiracy scheme was also the best in the MCTS below.

5 Plugging BVPI into MCTS

The next challenge is to use the theory of BVPI for selecting nodes on which rollouts

will be performed.

5.1 Selecting Rollouts

We describe a number of BVPI-based selection schemes and evaluate them as well

as other related schemes by plugging them into existing UCT based implementations

(denoted as “the host MCTS algorithm”) by changing only the selection phase. Each

scheme has a different tradeoff between metareasoning overhead (time for choosing

the nodes to sample), and the effectiveness of the resulting rollouts. The first scheme

we implemented is the Blinkered scheme from (Hay et al. 2012), which replaces the

UCT criterion by a VOI bound in the first tree level, resorting to UCT at deeper levels.

We now introduce our BVPI-based schemes, called Value of Information of a Batch

Efficient Selection (VIBES). The metareasoning overhead in VIBES is relatively high,

thus too expensive to use to decide every single rollout. Therefore, after a node v is

selected for sampling we perform N rollouts from v. This amortizes the metareason-

ing overhead over N rollouts. Additionally, some of the schemes below first select

a batch S of fringe nodes to sample. This set can be of any size (up to the number

27



Paper A. Monte-Carlo Tree Search using Batch Value of Perfect Information

of leaf nodes). In order not to over-commit a large number of rollouts in such cases,

we choose K nodes from S with the highest individual net VPI, and an additional K

randomly selected from S to a total of at most 2K nodes for rollouts. The additional

K random samples are used to allow measurements on nodes with VPI = 0 inside

the selected batch. Below we call this the batch selection method, BSM(N, K). Values of

N = 3, K = 5 proved to produce a good balance. That is, K was set to be roughly one

quarter of the size of a typical set S observed in a few trial runs. Then N was set such

that 2KN rollouts per decision delivered a metareasoning overhead of roughly 15% of

the runtime.

(1) Full tree VIBES (FT-VIBES): Exhaustively check all possible sets of fringe nodes

in the tree, to find a set S with the highest net BVPI(S). Then use BSM(N, K) on S.

(2) First level VIBES (FL-VIBES): Estimate the net BVPI for every subset of the root’s

children. Choose the subset S which maximizes net BVPI(S). Within S, choose a

child c with the maximal individual net VPI. At deeper levels, revert to selection as in

the host MCTS algorithm (e.g., the UCT formula if host=UCTO).

(3) Recursive first level VIBES (RFL-VIBES): Use FL-VIBES to select node c at the

first level. Then, recursively call FL-VIBES on c until reaching a fringe node.

(4) Blinkered VIBES (B-VIBES): Perform the blinkered algorithm (Hay et al. 2012)

until blinkered decides to halt. Then, resort to performing FT-VIBES.

(5) Conspiracy VIBES (C-VIBES):

Select the node-set S using the Conspiracy scheme (Algorithm 3). Then use

BSM(N, K) on S.

In all the above methods: (a) generate some random samples to gather statistics

before applying VIBES (typically 1% of the sampling budget), (b) stop the entire sam-

pling process if the sampling budget (number of rollouts per move, or a time limit

per move) is exhausted or if the scheme did not find a set S with positive net BVPI.

We also tried greedy schemes. The basic greedy scheme (G) repeatedly chooses the

node v with the greatest individual net VPI and performs rollouts from v. This halts

when the net VPI of v is non-positive or the simulation budget has been reached. This

method is thus essentially the same as the Meta-Greedy Single Step (MGSS*) method

of (Russell and Wefald 1991a) applied to MCTS.

Basic greedy is fast and performs well when the BVPI is submodular. Otherwise,
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it suffers from premature stopping, i.e. fails to detect sets of nodes with a high com-

bined BVPI. In order to take advantage of the speed of the greedy scheme but avoid

premature stopping, we can combine it with any of the above schemes (X), as follows.

Run the greedy scheme. Once the greedy scheme decides to stop due to low VPI,

revert to scheme X to decide on any additional samples as long as the budget allows.

We denote these combined schemes by G-X (e.g, G-FT-VIBES).

Finally, we need to address the issue of fringe node distributions used in the

BVPI, and the resulting distributions after potential additional rollouts. Ideally, use

a Bayesian scheme for the distributions: have some prior, and compute distributions

given past rollouts, and distributions over the conditional expectation of fringe node

utilities given additional potential rollouts. This issue is beyond the scope of this pa-

per, and even if somehow this is done, it would not be obvious how to do so in real

time. Instead we performed the following. We assumed that the fringe node distribu-

tions Pv are the empirical utility distributions of past rollouts, which is the reason for

the initial “statistics gathering” rollouts mentioned above. We then compute the BVPI

values as if rollouts from a node result in a perfect measurement of the fringe node

utility. As the latter assumption is obviously incorrect, we compensated by modify-

ing the measurement cost of a node. (Note that our BVPI schemes are not sensitive

to multiplying all costs and VOI values by a constant, so this compensation makes

sense.) Although the latter is somewhat of a hack, it works in practice in a way that

is not too sensitive to tunable parameters.

Thus, in the above schemes, as the measurement cost C(v) in the computation of

the net BVPI we used:

C(v) =
C
√

N(v)
B− Ū(α)

(A.9)

with N(v) as in Eq. A.1, B the maximal utility bound on the solution. The rationale

is: if the N(v) (=number of previous rollouts) is a large number, it will require more

future rollouts to change the overall average of all the rollout values by a significant

amount (on the order of B− Ū(α)). C is empirically determined over a few instances.

Results were not very sensitive to C, we used C = 96 in our experiments. A more

disciplined treatment of the costs is a non-trivial issue beyond the scope of this paper,

as the computation time is not on the same scale as the game utilities.
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Settings
UCTO Blink’d

FL-

VIBES

RFL-

VIBES

FT-

VIBES

B-

VIBES

C-

VIBES
Greedy

G-FL-

VIBES

G-RFL-

VIBES

G-FT-

VIBES

G-C-

VIBESn p

30

0.2 3, 006 2, 911 2, 989 2, 830 3, 625 2, 785 2, 598 2, 902 2, 709 2, 668 2, 973 2, 747

0.4 3, 600 3, 490 3, 564 3, 397 4, 356 3, 336 3, 130 3, 473 3, 253 3, 224 3, 563 3, 294

0.6 4, 198 4, 070 4, 172 3, 959 5, 095 3, 901 3, 630 4, 098 3, 804 3, 758 4, 149 3, 829

0.8 4, 801 4, 646 4, 768 4, 510 5, 829 4, 469 4, 165 4, 599 4, 344 4, 298 4, 742 4, 388

1 5, 401 5, 241 5, 378 5, 099 6, 521 5, 028 4, 675 5, 226 4, 893 4, 838 5, 346 4, 933

Avg. of n=30 4, 201 4, 072 4, 174 3, 959 5, 085 3, 904 3, 640 4, 060 3, 801 3, 757 4, 155 3, 838

60

0.2 5, 049 4, 836 4, 870 4, 804 6, 157 4, 753 4, 340 4, 842 4, 590 4, 480 5, 091 4, 495

0.4 7, 074 6, 775 6, 805 6, 735 8, 611 6, 665 6, 095 6, 762 6, 412 6, 252 7, 140 6, 309

0.6 8, 572 8, 237 8, 280 8, 179 10, 465 8, 084 7, 396 8, 268 7, 745 7, 568 8, 630 7, 651

0.8 10, 082 9, 704 9, 698 9, 603 12, 335 9, 501 8, 696 9, 667 9, 175 8, 915 10, 224 9, 030

1 11, 572 11, 091 11, 213 11, 049 14, 179 10, 937 9, 968 11, 102 10, 534 10, 266 11, 708 10, 366

Avg. of n=60 8, 470 8, 129 8, 173 8, 074 10, 349 7, 988 7, 299 8, 128 7, 691 7, 496 8, 559 7, 570

100

0.2 7, 506 7, 277 7, 392 7, 210 8, 929 6, 965 6, 240 7, 299 6, 961 6, 912 7, 273 6, 668

0.4 10, 966 10, 614 10, 763 10, 546 13, 005 10, 160 9, 109 10, 581 10, 151 10, 139 10, 488 9, 753

0.6 13, 459 13, 032 13, 232 12, 932 15, 961 12, 450 11, 162 13, 096 12, 424 12, 422 12, 810 11, 957

0.8 15, 916 15, 469 15, 634 15, 264 18, 923 14, 740 13, 226 15, 490 14, 683 14, 634 15, 157 14, 089

1 18, 346 17, 886 18, 076 17, 702 21, 851 17, 066 15, 273 17, 787 17, 005 17, 014 17, 461 16, 284

Avg. of n=100 13, 239 12, 855 13, 019 12, 731 15, 734 12, 276 11, 002 12, 851 12, 245 12, 224 12, 638 11, 750

Table A.2: Average results for CTP. The standard deviation was at most 0.36%.

6 Empirical Evaluation: MCTS

We now report results where the selection schemes were plugged into existing MCTS

algorithms for two domains.

6.1 Canadian Traveler Problem (CTP)

CTP experiments were on Delaunay graphs following (Bnaya et al. 2009; Eyerich et

al. 2010). Instance parameters were n (number of vertices), and p (probability for

each edge to be potentially blocked). For each potentially blocked edge e, p(e) is

chosen uniformly from the range [0, 1). Edge travel costs were random, uniform from

{1, . . . , 500}.

We compared the original UCTO code (Eyerich et al. 2010), with the same code

where the node-selection function (a UCT formula variant) was replaced by one of the

above described methods. All the algorithms were evaluated as follows. 10 instances

were generated for each pair of n ∈ {30, 60, 100} and p ∈ {0.2, 0.4, 0.6, 0.8, 1}. We ran

every instance 100 times using a time limit of 3 seconds to decide on each move.

Table A.2 shows the average cost of the path traveled by the agent for the different
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Selection alg. Cost Subopt. #RollOuts/Move

Optimal (VI) 2,572 0% N/A

UCTO 3,128 21.6% 12,371

Blinkered 3,021 17.5% 11,016

FL-VIBES 3,096 20.4% 4,284

RFL-VIBES 2,931 14.0% 1,576

FT-VIBES 3,778 46.9% 43

B-VIBES 2,890 12.4% 745

C-VIBES 2,699 4.5% 9,989

Greedy 2,989 16.2% 11,904

G-FL-VIBES 2,823 9.8% 10,978

G-RFL-VIBES 2,784 8.2% 8,732

G-FT-VIBES 3,084 19.9% 611

G-C-VIBES 2,847 10.7% 10,633

Table A.3: 30 node graphs, p=0.2, time limit 3 sec/move

algorithms. As can be seen, all the proposed schemes outperformed UCTO, except for

FT-VIBES (see below). C-VIBES delivered a good rollout selection at relatively little

overhead, thus the best overall performance: a major improvement of more than 15%

in the path-cost of the resulting solutions over UCTO.

In order to gain additional insight, we chose a typical instance where comput-

ing the optimal policy by value iteration (VI) over the belief space was feasible. We

examined the runtime and quality of the results vs. the optimal under two budget

constraints. (Const-1:) a time limit of 3 sec/move (as in Table A.2); results appear

in Table A.3. Here, FT-VIBES timed out after only a few samples. Conspiracy-VIBES

was the best here (4.5% from optimal), as it produces good sampling decisions with

only a modest overhead. (Const-2:) a rollout limit (but no time limit). Runtime vs.

path-costs results appear in Figure A.4 for a 10K rollout limit for all algorithms. Ad-

ditional runs with different limits for UCTO and C-VIBES are also shown, labeled

as “C-VIBES-3K” (limit 3,000 rollouts per move) etc. C-VIBES-3K already gets better

path-cost than UCTO-45K and runs 10 times faster. Furthermore C-VIBES-20K, seems

to have found the optimal policy for this instance in many of the runs.
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Figure A.4: 30 node graphs, p=0.2, w. 10,000 rollouts/move

It is also of interest that among all algorithms run with 10,000 samples, FT-VIBES

was the best w.r.t. policy quality, as expected. So the BVPI scheme done exhaus-

tively indeed resulted in the most efficient selection of nodes and samples if the meta-

reasoning overhead is ignored. However, this scheme is seen here to be completely

useless for MCTS due to its huge meta-reasoning overhead. Another interesting point

is that for 10,000 samples the greedy scheme was already better than UCT, but only

slightly. We conjecture that this is due to cases where the BVPI is not submodular.

This is supported by the results for the greedy hybrids, which select further nodes

after greedy decides that no nodes should be selected. All the greedy hybrids do

better than greedy w.r.t. policy quality, usually with negligible additional overhead.

6.2 StarCraft Battles

Our experiments used JarCraft, an open-source java StarCraft combat simulator as

well as the search algorithms from (Justesen et al. 2014). These algorithms use UCT

on different action spaces as follows:

(1) UCTCD: a UCT variant which handles simultaneous and durative actions. Possi-

ble actions are sets of unit commands. (Churchill and Buro 2013).

(2) Script-based UCTCD: an extension of UCTCD allowing both unit commands and

scripts as possible actions (Justesen et al. 2014). Also presented there were (3), (4):

Cluster-based UCTCD: two improvements of UCTCD that cluster units in order to

decrease the number of possible actions.

We modified these UCT-based algorithms, replacing their node-selection by Blink-

ered, Greedy, and C-VIBES. The test scenario is based on (Justesen et al. 2014): each
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competing algorithm in each run controls n
2 Protoss Zealots (close combat unit) and

n
2 Protoss Dragoons (ranged combat unit) vs. an opposing team of equal size con-

trolled by another algorithm. The units are first lined up by type and then scattered

randomly. For each army size n we chose the UCT variant with the best performance

according to (Justesen et al. 2014).

Representative results appear in Figure A.5 where Blinkered, Greedy, and C-VIBES

competed against UCT. C-VIBES was the best, averaging a 77% win rate against UCT

(see Figure A.5), though both Blinkered and Greedy were also consistently better

than UCT. C-VIBES also defeated Greedy and Blinkered in head-to-head matches

(not shown).

Figure A.5: Win rates vs. UCT (100 games). Error bars are 95% confidence intervals.

7 Conclusion

Optimizing VOI for individual nodes has been shown to improve allocation of roll-

outs (Hay et al. 2012; Feldman and Domshlak 2013), as well as backups (Feldman and

Domshlak 2013) in MCTS. Estimating the VOI for individual nodes is too limiting.

We suggested a method based on value of computation that considers large batches,

and suggested several effective ways to approximately optimize them. While we con-

firmed that previously suggested VOI methods (MGSS* and blinkered) outperform

UCT, our BVPI-based selection schemes plugged into MCTS implementations outper-

formed them all.

Although our measurements were assumed to be rollouts in a MCTS, the anal-

ysis in Section 3 and the batch selection methods in Section 4 may be applicable to

other information-gathering operations; such as computing a static heuristic evalua-

tion function at v, expanding v, or even real-world physical measurements (whenever
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the latter is meaningful).

Future improvements to our schemes are possible. First, a more disciplined way

to estimate the cost of computations (e.g. by learning) would be beneficial. Second,

a better defined distribution over fringe node utilities given the future rollouts is

desired, such as through Bayesian updating, or estimation methods from (Feldman

and Domshlak 2013), which is essentially orthogonal to our paper, can be attempted.
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Abstract

Given a set of items of unknown utility, we need to select one with a utility as high as possible

(“the selection problem”). Measurements (possibly noisy) of item values prior to selection are

allowed, at a known cost. The goal is to optimize the overall sequential decision process of

measurements and selection.

Value of information (VOI) is a well-known scheme for selecting measurements, but the

intractability of the problem typically leads to using myopic VOI estimates. Other schemes

have also been proposed, some with approximation guarantees, based on submodularity criteria.

However, it was observed that the VOI is not submodular in general. In this paper we examine

theoretical properties of VOI for the selection problem, and identify cases of submoularity and

supermodularity. We suggest how to use these properties to compute approximately optimal

measurement batch policies, with an example based on a “wine selection problem”.

1 Introduction

Decision-making under uncertainty is a domain with numerous important applica-

tions. Since these problems are intractable in general, special cases are of interest. In

this paper, we examine the selection problem: given a set of items of unknown utility

(but drawn from a known distribution), we need to select an item with as high a util-

ity as possible. Measurements (possibly noisy) of item values prior to selection are

allowed, at a known cost. The problem is to optimize the overall decision process of

measurement and selection. Even with the severe restrictions imposed by the above

setting, this decision problem is intractable (Tolpin and Shimony 2012; Radovilsky,

Shattah, et al. 2006; Radovilsky and Shimony 2008); and yet it is important to be able

to solve, at least approximately, as it has numerous potential applications. This paper

analyses cases where the value of information (VOI) is submodular, which is a suf-

ficient condition for achieving good approximate solutions to the selection problem

with appropriate greedy algorithms.

Settings where the selection problem is applicable are in meta-reasoning, i.e. con-

sidering which time-consuming deliberation steps to perform before selecting an ac-

tion (Russell and Wefald 1991b; Russell and Wefald 1991a; Hay et al. 2012), as well
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as settings where the items to be selected are physical objects. Examples of the latter

type are: oil exploration, locating a point of high temperature using a limited number

of measurements (Krause and Guestrin 2009), performing costly measurements in or-

der to find the best time to hit a target when the system is modeled using a stochastic

system estimator, such as a Kalman filter, and a good set of parameters for setting

up an industrial imaging system (Tolpin and Shimony 2012). The selection problem

can also be seen as a special case of Bayesian optimization, and can be used to select

(from a large batch of candidates) experiments to be performed (Azimi et al. 2016).

In most of the above applications the item values are naturally represented as

being dependent. A potential application used in this paper as a running example

(see Section 3) is selecting one from a set of wine cases that have uncertain qualities.

Similar applications are selecting a batch of applicants with unrelated backgrounds

to interview (from a larger set of job applicants) before making a hiring decision,

and selecting a set of appartments from disparate locations to visit (among the avail-

able listings) before making a rental or purchasing decision. In the latter type of

problems, the item distributions are either truly independent, or independent in a

practical sense: it is not possible or worthwhile to obtain statistics beyond individual

marginal distributions. (Note that such independence assumptions may be unjusti-

fied with job applicants that have a similar background, or apartments in the same

building.) In fact, in meta-reasoning in search an equivalent independence assump-

tion called “subtree independence” is commonly made (Russell and Wefald 1991b),

even though it does not truly hold in the underlying search domains. Likewise, for

oil exploration one could make such an independence assumption as a reasonable

first-order approximation if one is considering as items a set of disjoint oil fields that

are not physically near each other.

The selection problem is also called a Bayesian ranking and selection problem

(Raiffa and Schlaifer 2000; Frazier 2012; Swisher et al. 2003), where in (Frazier 2012)

the measurements are usually assumed to be noisy samples of the utility value of the

items. A widely adopted scheme for selecting measurements (also called sensing ac-

tions in some contexts, or deliberation steps in the context of meta-reasoning) is based

on value of information (VOI) (Russell and Wefald 1991b; Russell and Wefald 1991a).

Optimizing value of information is intractable in general, thus both researches and
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practitioners often use various forms of myopic VOI estimates (Russell and Wefald

1991b; Russell and Wefald 1991a; Hay et al. 2012) coupled with greedy search. The

properties of VOI have been of interest to the research community for quite a while

(Raiffa and Schlaifer 2000).

In particular, (Delara; Radner and Stiglitz 1984; Chadeand and Schlee 2001) ex-

amine conditions for nonconcavity in the value of information, a notion akin to non-

submodularity in a continuous setting. Submodularity is an important property, be-

cause in cases where the VOI is submodular, simple, greedy algorithms result in

provably near-optimal policies (Krause and Guestrin 2009; Krause and Guestrin 2011;

Papachristoudis and Fisher III 2012). However, as stated in (Delara; Radner and

Stiglitz 1984; Chadeand and Schlee 2001; Krause and Guestrin 2009), the VOI is not

submodular in general, and in particular submodularity does not hold in the selec-

tion problem (Tolpin and Shimony 2012), even in a very limited case involving only

two items. An interesting approximate solution for the batch version of the selection

problem appears in (Reches et al. 2013), which also proved that the selection problem

is NP-hard. Their theoretical bounds on the approximation error are not based on

submodularity.

Specifically, the selection problem analyzed in this paper is as follows (see Section

2 for the formal definition). We have a set of items I , each of which has some un-

known value (or utility). The utility of each item is a random variable, and the joint

distribution over the utilities of the items is known. It is possible to perform mea-

surements on an item, thereby obtaining information about its utility. Measurements

have a cost, specified by a known cost function C, which is usually an additive cost

function. After performing measurements, the decision-maker selects one item. We

assume a risk-neutral decision-maker, and thus the decision maker always selects an

item that has the highest expected utility given the observations. The problem is to

find a policy of performing measurements such that the utility of the selected item mi-

nus the cost of measurements has maximum expected value. In some settings (Tolpin

and Shimony 2012; Azimi et al. 2016), a measurement budget is also specified, and a pol-

icy is considered valid only if this budget is not exceeded. Some budgeted applications

(Azimi et al. 2016) optimize just the expected value of the selection (not factoring in

the measurement costs), but subject to the measurement budget constraint. Another
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common constraint is requiring that only a measured item may be selected, in which

case submodularity holds under quite general conditions (Azimi et al. 2016); see Sec-

tion 2 for a discussion on how their results relate to this paper. The latter constraint is

natural for risk-averse decision makers, e.g. in the above hiring decision application,

we may not wish to take the risk of hiring anyone we have not interviewed.

There are two common selection problem settings: batch, and online (also called

sequential, or conditional). In the online setting, the decision-maker performs some

measurements, then based on the resulting observations can decide on whether or

not to perform additional measurements, etc. A policy in this case is is essentially a

conditional plan. In the batch setting, the decision-maker decides on a set (batch) of

measurements to perform. The measurements are done essentially “in parallel”, in the

sense that the decision-maker does not get to perform additional measurements after

receiving observations from previous ones. Given the observed results, the decision-

maker then needs to make the final selection of an item. In this paper we consider

only the batch setting.

In the batch setting, the value of information is the expected value of the best

item given the observations, minus the expected value of the best item according

to the initial (prior) distribution. That is, before receiving the information, there is

some item that has the best expected value, which we call the “current best” item α.

For simplicity we assume that this item is unique. After receiving the observations

O, some other item β(O) may have the highest expected value. The expected value

of the difference uβ(O) − uα is the value of information (VOI). Note that both the

identity of the resulting best item β and its utility depend on O. In the batch setting

with perfect observations, the distribution over the observed values is equal to the

utility distribution of the respective item, and a set of measurments is fully specified

by a set of items to be measured. Thus finding an optimal policy can be done by

finding a set of measurements S to perform that has the highest expected VOI minus

cost (also called the net VOI). In this paper, we consider mostly the case of perfect

observations, i.e. where as a result of performing a measurement on an item, its

precise utility value becomes known. In general, measurements can generate noisy

(imperfect) observations. We briefly point out the cases where our results can be

extended beyond perfect observations.
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The theoretical results in this paper (Section 2) are as follows: the expected value

of perfect information in the batch setting is neither submodular nor supermodular,

in general. However, submodularity holds in the following cases:

• Theorem 1: the item utilities are jointly independent, and the utility of the cur-

rently best item α is known.

• Theorem 3: the utility of α is known, and there are only at most two additional

items (may be dependent).

• Theorem 4: the item utilities are jointly independent, the utility of α is suf-

ficiently high (condition C1), and the decision maker is constrained to always

measure α.

Theorem 1 is important because even this simple setting leads to an NP-hard selection

problem (Theorem 2). We also show by providing simple discrete-valued counterex-

amples where attempting to generalize these theorems fails. Theorem 3 cannot be

generalized to more items, as a counterexample with three items (in addition to α)

is presented. In Theorem 4, violating condition C1 makes the theorem break, even

with two items (in addition to α). Finally, we capitalize on the submodularity results

(Theorems 1 and 4) by suggesting a simple “compound” greedy scheme in Section 3

for near-optimal solution of the selection problem, and compare its performance to

the standard greedy algorithms on a wine quality dataset.

2 Main Results

We begin by formally defining the perfect information batch selection problem.

Definition B.1 (perfect information batch selection setting)

Let I = {I0, I1, ...In} be a set of n + 1 items with uncertain utility, represented by r.v.s

X0, ...Xn. We assume w.l.o.g. that the current best item α is item I0. For a cost Ci we

can measure Ii, obtaining a (perfect) observation of the utility of this item. We select

a subset S ⊆ I to be measured as a batch, for a total cost of ∑Ii∈S Ci, after which we

observe the results O (the true utilities of the items in S), and select a final item I f (O)

that has the highest expected utility given the observations.
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The optimization version of the perfect information batch selection problem is: un-

der the perfect information batch selection setting, find the set that achieves:

max
S∈I

(ES[I f (O)]− ∑
Ii∈S

Ci) (B.1)

where the subscript of E denotes the set of indices of the variables over which the

expectation is performed, and O are the observations due to measusuring the items

in S. Optionally, in the budget limited version of the selection problem, we are given a

budget limit C and need to optimize S under the additional constraint:

∑
Ii∈S

Ci ≤ C (B.2)

In order to simplify some of the proofs below, we make the additional assumption

that the decision maker always picks item α if its expected utility is at least as high

as that of all other items, given the past observations. That is, “among equals, prefer

item α”. Denoting the expected value of Xi by µi, note that by construction µα ≥ µi

for all i > 0. For a set of items S ⊆ I , denote the expected value of information

of a (perfect) observation of the utility of all these items by VPI(S), defined as the

expected value ES[I f (O)]− µα (with expectation taken over all possible observations

on S). Denote by pi the PDF of random variable Xi.

Example B.1

Consider a wine selection problem with quality distributions similar to Figure B.2.

Suppose that one wine case α that we wish to purchase has a known quality of

uα = 8. We have been offered two additional options, one with a quality distribution

X1 uniformly distributed in {5, 6, 7, 8, 9}, i.e. µ1 = 7, the other (X2) with quality in

{4, 10}, again uniformly distributed, so µ2 = 7. Suppose that our utility scale is

linear in the quality, that all wines cases cost the same (or that cost has already been

factored in negatively into the quality). Since the wines are not known to be related,

we assume that the quality distributions are independent. Testing some of the wine

cases is possible (at a known cost, though we ignore such costs at present), thereby

revealing their true quality. Note that if we test no wines, then we should rationally

pick the α wine for a quality of 8. If we choose to test wine case 2 prior to the

purchase, then with probability 0.5 its quality is revealed as 10, and we purchase it,
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thereby gaining 2. Otherwise, stick with α, and gain nothing. On average we gain

1, so VPI({X2}) = 1.

2.1 Batch VOI when the Utility of the Currently Best Item is Known

Theorem B.1

For a perfect information batch selection setting with independent item utility distri-

butions, where the utility uα of the currently best item α is known, the value of perfect

information VPI(S) is a submodular set function.

Proof: Due to independence, an item that has not been observed will never be

selected (except for α). Observed item i will be selected if it is observed to have utility

greater than uα and the rest of the observed items. (For conciseness, we use M(S)

to denote max({ui|i ∈ S}), and M(XS) to denote the respective random variable

max({Xi|i ∈ S}).) Therefore, the VPI of observing (the utility of) a set of items S that

does not include α is:

VPI(S) =
∫

M(S)>uα

(M(S)− uα)∏
i∈S

pi(ui)dui (B.3)

=
∫
(max(M(S), uα))− uα)∏

i∈S
pi(ui)dui (B.4)

= ES[max(M(XS), uα))]−uα (B.5)

Now write down the difference in VPI between S ∪ {I} and S, for some item I 6∈ S

using Equation B.3:

VPI(S ∪ {I})−VPI(S) = (ES∪{I}[max(M(XS∪{I}), uα)]− uα)

−(ES[max(M(XS), uα)]− uα)

= ES∪{I}[max(M(XS), XI , uα)−max(M(XS), uα)]

= ES∪{I}[max(XI −max(M(XS), uα), 0)]

Consider the difference in VPI for set S′ = S ∪ {J} for some item J 6= I, J 6∈ S. We
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have:

VPI(S′ ∪ {I})−VPI(S′) = ES′∪{I}[max(XI −max(M(XS′), uα), 0)]

= ES∪{I,J}[max(XI −max(M(XS), XJ , uα), 0)]

≤ ES∪{I,J}[max(XI −max(M(XS), uα)), 0)]

= ES∪{I}[max(XI −max(M(XS), uα)), 0)]

= VPI(S ∪ {I})−VPI(S)

Where the inequality follows due to removing a term from the (negated) maximiza-

tion. We have obtained that for all sets S that do not include α, the difference in VPI is

non-increasing as S (setwise) increases. Therefore, VPI(S) is a submodular function

of S. �

Corollary B.1

Theorem B.1 also holds given only a distribution over uα, if there is no way to obtain

additional information about uα. That is because an optimal (risk neutral) decision

maker would have to act as if uα = µα.

A similar argument leads to a generalization to noisy observations: although The-

orem 1 is stated in terms of perfect information, this is not an inherent limitation.

Consider a more general setting where measurements are noisy, but the value of each

item can be measured only once. In this setting, one can simply use the expected

posterior value instead of the actual value when making the decision, and our results

still apply. However, in settings where the measurement types on an item are allowed

to vary (e.g. allow a choice between one and two conditionally independent mea-

surements, or a choice of measurements that reveal different features of an item), it is

well known that submodularity does not hold (Frazier and Powell 2010; Tolpin and

Shimony 2012).

Observe that Theorem B.1 is relevant to additional settings. First, consider the

special case where uα = 0. In this case, action α can be re-cast as making no selection

at all, and the conditions of the theorem hold if all items have a non-positive prior

expected value. This actually is reaonable when items with uncertain value are being

sold to our decision-making agent, as the seller wishes to gain from the sale, and

presumably would not wish to sell an item for less than its expected value.

48



2. Main Results

Another setting in which Theorem B.1 applies is if the agent is not allowed to select

an item unless its value has been measured or is previously known. In this setting the

requirement that uα is greater than the expectation of all the rest of the items can be

dropped, and the results can be made significantly more general, as shown in Lemma

1 in (Azimi et al. 2016). The lemma states that the expectation of the maximum of

a set of random variables is monotonic non-decreasing and submodular, and does

not even require that the variables be independent. Lemma 1 can thus also be used

to prove our Theorem B.1. It is interesting to note that in order to apply Lemma 1

in (Azimi et al. 2016), they also required perfect observations. However, unlike our

Theorem B.1, the lemma cannot be easily applied if we relax the perfect information

limitation, as that would lead to an apparent contradiction due to dependencies, as

discussed in Section 2.1.

Complexity of the Selection Problem

The batch meaurements selection problem was shown to be be NP-hard (Reches et al.

2013), in a setting where multiple noisy measurements per item are allowed. We show

that the problem gives rise to an NP-hard decision problem even if the observations

are perfect.

Definition B.2 (perfect information budget-limited batch selection decision prob-

lem (PBSP))

In the perfect information batch selection setting from Definition 1, is there a subset

S ⊆ I , that has a total measurement cost not greater than C, such that the expected

utility of the final item I f selected after observing the utility of the items in S, is at

least U?

Theorem B.2

The PBSP is NP-hard.

The proof appears in Appendix A, by reduction from Knapsack to a PBSP re-

stricted to the case where uα is known to be 0, and where the unknown item utility

distributions are independent over {−1, 1}. It follows immediately from these restric-

tions that the perfect information budget-limited batch selection decision problem

remains NP-hard under the conditions of Theorem 1. Note, however, that if we also
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restrict the measurement costs in PBSP to be all equal, a greedy algorithm would

result in an optimal subset, and thus a trivial polynomial time solution to the PBSP.

Whether the PBSP with equal costs but with an arbitrary independent discrete distri-

butions is NP-hard is an open problem.

VPI in the Presence of Dependencies

We now consider the perfect information batch selection setting, without the inde-

pendence assumption. With dependencies the amount of information obtained by

additional observations, having already made some observations, is ususally reduced.

Intuition would suggest that the same would therefore occur for the VPI as well. In-

deed, in the base case of n=2 the VPI is still subadditive. For example, the wine

selection problem in example 1 with the same marginal distributions, but where X1

and X2 are dependent, fall under this case.

Theorem B.3

For a batch selection setting with 3 items, where the utility of the currently best item α

is known, the value of perfect information is subadditive, i.e. VPI({1})+VPI({2}) ≥

VPI({1, 2}).

Proof: Note that, unlike the independent case, when observing only one item it is

actually possible to select either the other, unobserved item, or α. This results in:

VPI({1}) =
∫

max(u1,µ2|1(u1))>uα

(max(u1, µ2|1(u1))− uα)p1(u1)du1

where µ2|1(u1) is the expected utility of item 2 given that the item 1 was observed to

have utility u1, defined as:

µ2|1(u1) =
∫

u2

p2(u2|u1)u2du2

the VPI for item 2 is defined symetrically, exchanging the roles of items 1 and 2 in

these equations.

The value of information for observing both item 1 and item 2 (followed by select-

ing the best of them or α, whichever has maximal utility) is:

VPI({1, 2}) =
∫ ∫

max(u1,u2)>uα

(max(u1, u2)− uα)p1,2(u1, u2)du1du2 (B.6)
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Separating out the domain we can write:

VPI({1, 2}) =
∫

u1>uα

∫
u2≤u1

(u1 − uα)p1,2(u1, u2)du1du2 +
∫

u2>uα

∫
u1<u2

(u2 − uα)p1,2(u1, u2)du1du2

Denote the first integral by J1 and the second by J2, for convenience. We now rewrite

VPI({1}) as a sum over the regions:

VPI({1}) =
∫

u1>uα

(max(u1, µ2|1(u1))− uα)p1(u1)du1 +
∫
{u1|u1≤uα∧µ2|1(u1)>uα}

(µ2|1(u1)− uα)p1(u1)du1

Now, dropping the µ2|1(u1) from the maximization in the first integral and noting

that the second integral is non-negative, we get:

VPI({1}) ≥
∫

u1>uα

(u1 − uα)p1(u1)du1

=
∫

u1>uα

∫
u2≤u1

(u1 − uα)p1,2(u1, u2)du1du2 +
∫

u1>uα

∫
u2>u1

(u1 − uα)p1,2(u1, u2)du1du2

= J1 +
∫

u1>uα

∫
u2>u1

(u1 − uα)p1,2(u1, u2)du1du2 ≥ J1

Likewise we show that VPI({2}) ≥ J2, and thus VPI({1})+VPI({2}) ≥ VPI({1, 2}).

�

Unfortunately, this submodularity result has no practical use, as it does not gen-

eralize to n ≥ 3, as is evident from the following counterexample. Let uα = 10, and

we have 3 additional items with utility distributed as binary variables, with values

{L, H}. The dependency is “parity”, that is, exactly an even number of the items have

value H, and the rest have value L. The distribution over the 4 possible legal configu-

rations is uniform, i.e. each has probability 0.25. The utility values are: u1L = u2L = 5,

and u1H = u2H = 13, so that µ1 = µ2 = 9 < uα. For the 3rd item, we have: u3L = 0,

and u3H = 18, so that µ3 = 9 < uα.

Note that the marginal distribution over each of the items is uniform, and remains

uniform given the observation of one other item, i.e. the variables are pairwise inde-

pendent. The individual VPIs are therefore:

VPI({1}) = 0.5× 0 + 0.5× (13− 10) = 1.5

and due to symmetry we also have VPI({2}) = 1.5. Having observed both items 1

and 2, the utility of item 3 is known with certainty, and it is selected if known to have
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value H. Therefore we have:

VPI({1, 2}) = 0.25×(0 + (18−10) + (18−10) + (13−10)) = 4.75 > VPI({1}) + VPI({2})

Finally, note that Lemma 1 from (Azimi et al. 2016) does not require indepen-

dence, and can be used to show that VOI of perfect measurements is submodu-

lar if we do not allow the agent to select an unmeasured item. The above coun-

terexample shows that the applicability of Lemma 1 cannot easily be extended to

allow imprecise measurements. Allow a very noisy measurement for item 3, e.g.

P(ObserveHIGH|u3 = H) = 0.51, P(ObserveHIGH|u3 = L) = 0.49. The VOI values

change only slightly, but now the requirement that only measured items can be se-

lected is met. However, as shown above, the value of information is not submodular.

2.2 Batch VOI when the Utility of the Currently Best Item is Un-

known

Consider now that we are given a distribution over uα, but unlike Corollary 1, ad-

ditional information about uα can be obtained. For simplicity, consider just the case

with 2 items. In the well-known case exhibited in figure B.1, we can see that it is not

possible, by observing only one item, to make an optimally behaving agent change

the choice from α to β. So the individual VPI are zero. But since there is some non-

zero probability that uα is less than uβ, observing both items it is possible that β will

be selected to increase the utility, therefore we have VPI({α, β}) > 0. In this case

the value of perfect information is supermodular, but does this hold in general for 2

items?

mu_beta mu_alpha

alpha
beta

probability

utility

Figure B.1: Utility distributions with supermodular VPI
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Consider the distributions: uα is evenly distributed: P(uα =0) = P(uα =10) = 0.5,

and uβ is distributed as P(uβ = 1) = 0.7, P(uβ = 11) = 0.3. We get (µα = 5) > (µβ =

4). The individual values of perfect information are:

VPI({α}) = 0.5× 0 + 0.5× (4− 0) = 2

VPI({β}) = 0.7× 0 + 0.3× (11− 5) = 1.8

For observing both items, we get:

VPI({α, β}) = 0.5×0.3×(11−10) + 0.5×0.3×(11−0) + 0.5×0.7×(1−0) + 0.5×0.7×0

= 2.15 < VPI({α}) + VPI({β})

This example is discouraging, since we have neither submodularity nor supermod-

ularity. An interesting question is about the VPI among sets of observations that must

include an observation of the currently best item. In general, the VPI of such sets is

neither submodular nor supermodular, as shown by the following counterexample.

We have 3 items, with distributions as follows. Current best item α, distributed:

P(uα = 20) = P(uα = 0) = 0.5. Second best item β, distributed: P(uβ = 9) = P(uβ =

5) = 0.5, and third item γ, distributed P(uγ = 6) = P(uγ = 2) = 0.5. This gives us:

µα = 10, µβ = 7 and µγ = 4. If we observe only item α, if it has a low value we pick

item β so we have:

VPI({α}) = P(uα = 0)× (µβ − 0) = 3.5

If we also observe item β, this makes no difference as any possible utility value for

item β is still higher than µγ. Likewise, observing α and γ, we still select α if uα = 20

and β if uα = 0. Therefore we have:

VPI({α, β}) = VPI({α, γ}) = VPI({α}) = 3.5

However, the value of observing all items is higher, since item γ may be better:

VPI({α, β, γ}) = P(uα= 0)×[P(uβ= 9)×9+P(uβ= 5)×(P(uγ= 6)×6+P(uγ= 4)×5)]

= 0.5× [0.5× 9 + 0.5× 5.5]

= 3.625 > VPI({α, β}) + VPI({α, γ})−VPI({α})

which clearly violates submodularity for sets containing observations of item α.
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However, if uα is always sufficiently high, i.e. if every possible value of uα is no

less than µβ, submodularity does hold among such sets. In general, denote:

Condition C 1

P(uα < µi) = 0 for all items i other than α.

Example B.2

Consider the same wine selection problem instance as in example 1, except that the

quality of the α wine case is no longer known to be 8: instead its quality is uniformly

distributed among {7, 8, 9}. With the qualities X1 and X2 being independent and

distributed as in example 1, this example obeys condition C1.

Formally, denote by VPIα(S) the value of information of perfectly observing the

utility of all items in S, as well as that of α. (This is equivalent to VPI(S ∪ {α}), but

we wish to emphasise that this is a function of S not including α, hence the above

notational variant.)

Theorem B.4

For a batch selection setting with jointly independent items where condition C1 holds,

the value of perfect information VPIα(S) is a submodular set function of S.

Proof: Note that this theorem is a strict generalization of the corollary of Theorem

B.1, as condition C1 always holds trivially if α is the current best item and uα is known.

Condition C1 insures that after the observations of items in S, the optimal policy must

select either one of these observed items, or α. (This is not necessarily the case if C1

is violated.) Therefore the VPI here can be obtained in a manner similar to Equation

B.3, with integration over uα:

VPIα(S) =
∫

uα

∫
M(S)>uα

(max({ui|i ∈ S})− uα)pα(uα)duα ∏
i∈S

pi(ui)dui (B.7)

= ES∪{α}[max(M(XS), uα))− uα] (B.8)

Similar to the proof of Theorem B.1, write down the difference in VPIα between
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S ∪ {I} and S, for some item I 6∈ S using Equation B.7:

VPIα(S ∪ {I})−VPIα(S) = ES∪{I,α}[max(M(XS∪{I}), uα))− uα]

−ES∪{α}[max(M(XS), uα))− uα]

= ES∪{I,α}[max(M(XS), XI , uα)−max(M(XS), uα)]

= ES∪{I,α}[max(XI −max(M(XS), uα), 0)]

Consider the difference in VPI for set S′ = S ∪ {J} for some item J 6= I, J 6∈ S. We

have:

VPIα(S′ ∪ {I})−VPIα(S′) = ES′∪{I,α}[max(XI −max(M(XS′), uα), 0)]

= ES∪{I,J,α}[max(XI −max(M(XS), XJ , uα), 0)]

≤ ES∪{I,J,α}[max(XI −max(M(XS), uα)), 0)]

= ES∪{I,α}[max(XI −max(M(XS), uα)), 0)]

= VPIα(S ∪ {I})−VPIα(S)

Therefore, VPIα(S) is a submodular set function of S. �

3 Application of Results

A typical application of submodularity is in algorithms that compute near-optimal

policies for selection in the perfect information batch selection setting. Consider for

example a batch setting selection problem where the measurement cost function C is

supermodular (or additive, as a special case common in applications). As a result, the

optimal solution to the (batch setting) selection problem is to measure a set of items S

that maximizes VPI(S)− C(S) (the net VPI), followed by selecting the item with the

best expectation given the observations.

If we know the utility of item α, then VPI(S)−C(S) is submodular due to Theorem

B.1. We can thus use a standard greedy algorithm that starts with an empty candidate

set S, and repeatedly adds to S items that have the highest net gain (best (marginal)

VPI minus cost), until no item has a positive net gain. We call this method the

(additive) greedy algorithm. According to a fundemental result by Nemhauser et

al. 1978, the greedy algorithm already guarantees an expected utility that is close to

optimal. The quality of the greedy algorithm in practice is usually much better than
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the guaranteed bounds, and a similar tendency can be seen in the example wine-

selection application below. The quality of the results seems to occur due to the

fact that submodularity is a guarantee against “premature stopping” in the greedy

algorithms1; deviations from optimality resulting from picking non-optimal items

early-on seem much less problematic in practice than indicated by the worst case

in theory (a factor of 1− 1/e for the monotonic case, worse for non-monotonic which

is the case here).

As cases where uα is known may be rare, it is possible to use a similar scheme

if uα is not known, but the distributions obey condition C1. In this case, run the

greedy algorithm twice: once for sets that do not contain measurements of item α,

and once for sets that do contain such measurements; compare the expected value of

both resulting measurement sets, and return the better of the two. We call this method

the compound greedy algorithm. Again, Theorems 1 and 4 imply that the functions

we optimize in both cases are submodular, thus the greedy algorithms return sets that

are near-optimal.

3.1 Example Setting: Wine Selection

We examine an example application for the perfect information batch selection setting,

and solve a selection problem on a typical set of items. A comparison of algorithm

performance on such a dataset indicates the type of results one can observe with

greedy optimization algorithms for the selection problem.

Definition B.3 (Wine selection problem)

Given a set of wine types I = {I0, ...In}, each wine has an unknown quality, but a

quality distribution is known for each type. In addition, for a known cost Ci, we can

purchase and send a bottle of each wine type to a sommelier for analysis and quality

determination (or taste it ourselves, for the few people who actually understand wine

quality, though clearly not the authors of this paper). Which subset S of the wines

(if any) needs to be sent to the sommelier in order to maximize the expected utility

of testing and final decision? (That is, maximize the expected quality of the final

1“Premature stopping” is a term used to mean that although there is a set of items with a combined

VOI greater than its measurement cost, the (greedy) algorithm decides not to measure any additional

items because their individual VOI is too low. See example B.3 in Section 3.1.
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selection, minus the sum of costs Ci of wines in S, i.e. the net VPI).

The setting for the tests was based on the UCI white wine quality dataset (Paulo

Cortez 2009; P. Cortez et al. 2009). The dataset contains over 1000 wines, with 11

feature values for each wine, such as pH, alcohol level, etc. The target attribute value

(quality) is based on evaluations made by wine experts, and ranges from 1 (very bad)

to 10 (excellent).

Figure B.2: Wine quality distributions

Using this dataset, we constructed for each wine a quality distribution based on

the quality distribution of all wines in the data set that had the same feature values.

This distribution was adjusted by applying Kernel density estimation (KDE) using a

Gaussian kernel and a rule of thumb suggested in (Silverman 1986) that increases the

kernel width as a function of the variance. This resulted in the wine quality distribu-

tions depicted in Figure B.2, a distribution scatter plot where darker color indicates

higher probability. Each value on the X axis indicates a specific wine type, with wines

sorted by expected quality value. The wine quality distributions are assumed to be

independent.

Using the above distribution, the following experiments were conducted. Each

experiment was on a set I of n + 1 randomly picked wines from the dataset, where

n was an experimental parameter, and for each wine a random cost Ci was drawn

uniformly between 0.01 to 0.1 (assumed to be on the same scale as quality values).

The wine with best expected value from I is the α wine, the prior best. We then used

4 different methods to find the measurement policy (i.e. batch of wines to be tested).

1. Exhaustive: Every possible subset S of I (both with and without the alpha wine)

was examined. The S which maximized the net VPI was retured. S here is the

optimal (batch) measurement policy.

2. Greedy (additive) approach. The wines are kept sorted according to their my-

opic expected net VPI w.r.t. the current batch. A batch S is incrementally con-
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structed, starting from the empty set: every iteration, the best candidate wine

from I − S is added to S, as long as the net myopic VPI for adding this wine is

positive.

3. Greedy (rate) approach. This greedy method is the same as the additive greedy

approach, except that the wines are kept sorted according to their expected VPI

divided by cost of the measurement. Once this value drops below 1 for all

remaining wines, the algorithm returns the current batch. This approach is the

same as in (Azimi et al. 2016), modified to the wine selection problem.

4. Compound greedy approach: Run the greedy (additive) algorithm twice: once

for sets that do not contain the α wine, and once for sets that do contain α.

Compare the expected net VPI of both resulting measurement sets, and return

the better of the two.
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Figure B.3: Comparison of net VPI for various item set sizes

For each of the following cases, we varied n, the number of items, from 1 and 20:

1. Known uα, created by setting the value of uα to its mean in each randomly

picked item set. Here compound greedy is the same as simple greedy, so is not

shown.

2. uα unknown, but condition C1 holds (generated by random sampling of sets,

rejecting sets where C1 did not hold).

3. Instances where condition C1 does not hold (and obviously unknown uα).

The net VPI, averaged over 5 random item sets for each item set size, is shown in

Figure B.3.

59



Paper B. Some Properties of Batch Value of Information in the Selection Problem

Both standard greedy algorithms averaged 0.99 of the optimal net VPI, while com-

pound greedy averaged slightly better at 0.993, all considerably better than the theo-

retical bound. It is interesting to observe that the greedy algorithms performed well

even in many cases where the theorems do not guarantee submodularity, such as the

cases where condition C1 did not hold (Figure B.3 upper right). In some cases rate

greedy performed better than both of the other methods, but a rate-based version

of compound greedy (not shown) dominates rate-greedy. In extreme cases (which

did not occur in the above runs) the net VPI is 0 for both rate and additive greedy,

even though considerable net VPI is achievable. This occurs due to the “premature

stopping” phenomenon caused by non-diminishing returns.

Example B.3

Consider the case where condition C1 holds as in Example B.2, with quality dis-

tribution of the α wine being uniform among {7, 8, 9}, but in addition the best

possible quality in all the other items is no better than the E(Xα) value, such as

when the only other choice is X1 distributed uniformly among {6, 7, 8}. In this case

the VPI of every singleton set is 0, similar to the situation depicted in Figure B.1,

whereas measuring both wines results in a gain of 1 with probability 1
9 , and thus

VPIα({X1}) = 1
9 . This will cause the rate and additive greedy algorithms to incor-

rectly return an empty set of items to be measured. The compound greedy algrithm

avoids exactly this pitfall.
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Figure B.4: Algorithm runtime comparison: time vs. item set size

We now turn to the issue of computation time. All the above algorithms require

evaluation of the VPI of a batch, which can itself be non-trivial. An initial naive

implementation caused even the greedy algorithms to time out on sets of 20 wines.

This sub-problem can be handled in the general case by approximating the VPI (i.e.

expectation of the maximum) of each batch by sampling (Azimi et al. 2016). In the

wine selection problem, however, we have independent discrete random variables

with greatly overlapping domains, so we can cheaply compute the distribution of the

maximum, and from there evaluate the expectation of the maximum exactly.

Runtimes for the algorithms appear in Figure B.4, performed on an Intel(R) Core(TM)

i7-4700HQ 2.40GHz with 8 GB RAM running windows 8.1 x64, using multiple-thread

implementations. The software was implemented in C# with optimizations. Clearly,

the exhaustive method delivers the best net VPI, but its runtime is prohibitive for

large sets of wines.
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Figure B.5: Comparison of net VPI for item set size 20

Both the additive and rate greedy were the fastest, with compound greedy roughly

a constant factor slower. In fact, despite the improved VPI computation, this part

still dominates the runtime, and adding caching of computations of random variable

maximizations resulted in the compound greedy algorithm being only a few percent

slower than the other greedy algorithms (not shown). Therefore, although the im-

provement due to the compound greedy algorithm appears small, it comes essentially

for free and is thus worthwhile. The greedy algorithms appear to be scalable: a exper-

imental run with n = 100 wines resulted in runtimes of approximately 200 seconds

for each of the greedy algorithms (including compound greedy, with caching).

As differences in performance were more pronounced for the larger set sizes, we

tried more instances with n = 20, which is the largest for which we could obtain the
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optimal results in reasonable time. The results are shown as a cumulative average plot

(Figure B.5). While the value of information for all greedy algorithms is still close to

the optimal value, the compound greedy algorithm again is slighly better, averaging

0.99 of the optimal net VPI, while the additive and rate greedy averaged roughly 0.98

of the optimal net VPI. The compound-greedy algorithm showed an improvement

over the simple greedy algorithms whether or not condition C1 held.

4 Conclusion

We have examined cases where the batch value of perfect information is submodular

in the selection problem, mostly in the case where the item utility distributions are

independent. We have shown that a resulting optimization problem is NP-hard, even

in such restricted cases. Nevertheless, greedy optimization algorithms seem to achieve

good results in practice. The theoretical results suggest that greedy algorithms should

be supplemented by examining sets that include the currently best item, even if its

individual VPI is zero, and this is supported by empirical evidence.

We suggest that such deviations from submodularity indicate points where the

greedy and myopic optimization schemes can be improved w.r.t. net VPI, at relatively

little computational cost. As such, the simple method suggested in this paper com-

plements the idea of “blinkered VOI” (Hay et al. 2012). Our motivation for this work

comes from meta-reasoning in search, where the information is gathered by search

actions, and solving a selection problem is a first step that suggests a way to pro-

ceed at the first level in the search tree. Generalization of these methods to selecting

computations at deeper levels of the search tree is a non-trivial issue for future work.
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Appendix A

Proof (of Theorem 2): By reduction from knapsack ((Garey and Johnson 1979) prob-

lem number [MP9]), which is re-stated below.

Definition B.4 (Knapsack problem)

Given a set of items S = {s1, ...sn}, each with a positive integer weight wi and a

positive integer value vi, a weight limit W and a target value V, is there a subset S of

S such that the total weight of S is at most W, and the total value of the elements of

S is at least V?

We assume w.l.o.g. that vi < V for all items, as items that violate this solve the

Knapsack problem trivially.

In reducing Knapsack to PBSP, each item in I in the selection problem will stand

for the respective element in the Knapsack problem, adding the α item that does not

correspond to any item in the Knapsack problem. As this is a simple one-to-one

mapping, for the sake of simplicity we therefore abuse the notation and treat the

items as if they are actually the respective elements from S in the Knapsack problem.

The distributions of values and costs are defined as follows: let H = max
1≤i≤n

{vi}, and

ε = 1
2H2n3 . Then C = W, U = ε(V − 1

2), and the distributions and measurement costs

are as follows:

• For Xα we have uα = 0 with probability 1. The cost Cα is irrelevant (because the

exact value of uα is already known) and can be taken to be 0.

• For every other item, we have a binary-valued distribution: P(Xi = 1) = εvi,

and P(Xi = −1) = 1− (εvi). The measurement cost of these items is given by

Ci = wi.

Note that indeed the current best action is sα, because εvi < 1
2 for all 1 ≤ i ≤ n.

Therefore, each item si becomes better than sα if and only if si is observed to have

a positive utility. We now show that a subset S ⊆ S solves the knapsack problem if

and only if S solves the PBSP. Let m = |S| ≤ n, and in order to simplify the notation

below, we assume w.l.o.g. that S = {s1, s2, ..., sm}.

(⇒) Let S be a solution to the knapsack problem. We have ∑m
i=1 wi ≤ W = C, so
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S satisfies the budget constraint in the selection problem. Denote the probability

that at least one of the items in S has value 1 by P(S). Since by construction the

expected utility for a set of measurements S is exactly P(S), it is sufficient to show

that P(S) ≥ U. Since the value distributions are jointly independent, we have:

P(S) =
m

∑
i=1

P(Xi = 1)
i−1

∏
j=1

(1− P(Xj = 1)) =
m

∑
i=1

εvi

i−1

∏
j=1

(1− εvj)

Re-arranging P(S) into sums according to powers of ε, we get:

P(S) =
m

∑
i=1

εi(−1)(i+1) ∑
{N⊆[1..m]∧|N|=i}

∏
k∈N

vk ≥ ε
m

∑
j=1

vj−
bm/2c

∑
i′=1

ε2i′ ∑
{N⊆[1..m]∧|N|=2i′}

∏
k∈N

vk

where the inequality is due to dropping all the terms for odd i (which are positive),

except for i = 1. Now, for each i′, the number of elements in N is clearly (m
2i′), which

is bounded by m2i′ , and thus by n2i′ . Since by definition we also have vk ≤ H for all k,

we get:

P(S) ≥ ε
m

∑
j=1

vj −
bm/2c

∑
i′=1

(εHn)2i′

= ε
m

∑
j=1

vj −
bm/2c

∑
i′=1

(
1

2H2n3 Hn)2i′ = ε
m

∑
j=1

vj −
bm/2c

∑
i′=1

(
1

2Hn2 )
2i′

> ε
m

∑
j=1

vj −
n

4H2n4 = ε
m

∑
j=1

vj −
1

4H2n3 = ε
m

∑
j=1

vj −
ε

2

= ε(V − 1
2
) = U

where the last equality follows from S being a solution to the Knapsack problem.

Therefore, S is a solution to the PBSP.

(⇐) Let S be a solution to the PBSP. and thus ∑m
1=1 Ci ≤ C = W, so S obeys

the weight limitation of the Knapsack problem. It is thus sufficient to show that

∑m
i=1 vi ≥ V. As above, we have:

P(S) =
m

∑
i=1

εi(−1)(i+1) ∑
{N⊆[1..m]∧|N|=i}

∏
k∈N

vk ≤ ε
m

∑
j=1

vj +
dm/2e−1

∑
i′=1

ε2i′+1 ∑
{N⊆[1..m]∧|N|=2i′+1}

∏
k∈N

vk

where the inequality is due to dropping all the terms for even i (which are negative).

Now, for each i′, the number of elements in N is clearly ( m
2i′+1), which is bounded by

m2i′+1, and thus by n2i′+1. Since by definition we also have vk ≤ H for all k, we get:
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P(S) ≤ ε
m

∑
j=1

vj +
dm/2e−1

∑
i′=1

(εHn)2i′+1

= ε
m

∑
j=1

vj +
dm/2e−1

∑
i′=1

(
1

2H2n3 Hn)2i′+1 = ε
m

∑
j=1

vj +
dm/2e−1

∑
i′=1

(
1

2Hn2 )
2i′+1

< ε
m

∑
j=1

vj +
n

8H3n6 = ε
m

∑
j=1

vj +
1

8H3n5

< ε
m

∑
j=1

vj +
1

8H2n3 = ε
m

∑
j=1

vj +
ε

4
= ε(

m

∑
j=1

vj +
1
4
)

Since S is a solution to PBSP, we have P(S) ≥ U = ε(V − 1
2), and thus V ≤

∑m
j=1 vj +

3
4 . As both V and ∑m

j=1 vj are positive integers, we also have ∑m
j=1 vj ≥ V.

Therefore, S is a solution to the knapsack problem. �
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Abstract

Making plans that depend on external events can be tricky. For example, an agent considering

a partial plan that involves taking a bus must recognize that this partial plan is only viable if

completed and selected for execution in time for the agent to arrive at the bus stop. This setting

raises the thorny problem of allocating the agent’s planning effort across multiple open search

nodes, each of which has an expiration time and an expected completion effort in addition to

the usual estimated plan cost. This paper formalizes this metareasoning problem, studies its

theoretical properties, and presents several algorithms for solving it. Our theoretical results

include a surprising connection to job scheduling, as well as to deliberation scheduling in

time-dependent planning. Our empirical results indicate that our algorithms are effective

in practice. This work advances our understanding of how heuristic search planners might

address realistic problem settings.

1 Introduction

Agents that plan and act in the real world must deal with the fact that time passes as

they are planning. For example, an agent that needs to get to the airport may have

two options: take a taxi, or take a bus. Each of these options can be thought of as a

partial plan to be elaborated into a complete plan before execution can start. Clearly,

the agent’s planner should only elaborate the partial plan that involves taking the

bus if it can be elaborated into a complete plan before the bus leaves. Furthermore,

consider a second example. When faced with two partial plans that are each estimated

to require five minutes of computation to elaborate into complete plans, if only six

minutes remain until they both expire, then we would want the planner to allocate all

of its remaining planning effort to one of them, rather than to fail on both.

Cashmore et al. 2018 recognized the problem of node expiration in the context of

temporal planning with timed initial literals (TIL) (Cresswell and Coddington 2003;

Edelkamp and Hoffmann 2004), where the TILs occur at times that are relative to

when planning starts, rather than to when execution starts. However, their approach

to addressing it is relatively superficial in that, after estimating the latest time when

execution can start for each search node, this information is used merely to prune
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nodes that become infeasible. Such a planner, while handling the first example given

above, can fail in our second example. In this paper, we investigate the problem more

deeply, explicitly using rational metareasoning (Russell and Wefald 1991) to choose

which node to expand. We formalize this metareasoning problem, which we call Al-

locating Effort when Actions Expire (AE2), as an MDP, allowing us to define the optimal

solution in a manner similar to Hansen and Zilberstein 2001. We establish close con-

nections between AE2, deliberation scheduling in time-dependent planning (Boddy

and Thomas L Dean 1994), and a seemingly unrelated problem in job scheduling with

deadlines (Yedidsion 2012). We describe several efficient ways of solving the meta-

reasoning problem, although not necessarily optimally, and evaluate them empirically

over several types of distributions. The empirical results suggest that taking estimated

node expiration times into account can lead to a better planning strategy.

In this paper, we examine only the one-shot version of the metareasoning problem.

Integrating the solutions we present here into a temporal planner can involve solving

this problem repeatedly, possibly after each node expansion, in addition to gather-

ing the requisite statistics. These issues are beyond the scope of the current paper.

Nevertheless, we devote attention to developing effective metareasoning algorithms

that can be useful in practice. When testing our algorithms, we use scenarios based

on realistic search trees generated by OPTIC (Benton et al. 2012), the same planner

that was adapted in the experiments of Cashmore et al. 2018. Our work provides a

firm basis for further efforts to design planners for agents that interact with a wider

world containing exogenous processes and other agents, one in which time passes

and opportunities can be fleeting.

1.1 Problem Statement

To formalize AE2, we abstract away from any particular planning methodology and

merely posit the existence of n computational processes, all attempting to solve the

same problem. For example, these may represent promising partial plans for a certain

goal, implemented as nodes on the frontier of a search tree. There is a single comput-

ing thread or processor to run all the processes, so it must be shared. When process

i terminates, it will, with probability Pi, deliver a solution or, otherwise, indicate its

failure to find one. For each process, there is a deadline, defined in absolute wall
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clock time, by which the computation must be completed in order for any solution it

finds to be valid, although that deadline may only be known to us with uncertainty.

For process i, let Di(t) be the CDF over wall clock times of the random variable denot-

ing the deadline. Note that the actual deadline for a process is only discovered with

certainty when its computation is complete. This models the fact that, in planning, a

dependence on an external timed event might not become clear until the final action

in the plan is added. If a process terminates with a solution before its deadline, we

say that it is timely. The processes have performance profiles described by CDFs Mi(t)

giving the probability that process i will terminate given an accumulated computa-

tion time on that process of t or less. Although some of the algorithms we present

may work with dependent random variables, we assume in our analysis that all the

variables are independent. Given the Di(t), Mi(t), and Pi, the objective of AE2 is to

schedule processing time over the n processes such that the probability that at least

one process finds a solution before its deadline is maximized. This is the essential

metareasoning problem in planning when actions expire.

2 Previous Work

There is much related work on planning under time constraints, such as that by

Thomas L. Dean et al. 1995. For an appropriate early survey see Garvey and Lesser

1994. In this section we refer only to existing work that is directly used in developing

results for AE2: work in deliberation scheduling (Boddy and Thomas L Dean 1994)

and job scheduling (Yedidsion 2012). In both of these problems, we have a set of n

computational processes that need to be allocated processing time on a single proces-

sor. Each process 1 ≤ i ≤ n has a known deadline di by which computation in that

process must be completed.

2.1 Deliberation Scheduling

In deliberation scheduling for time-dependent planning (Boddy and Thomas L Dean

1994), typically what is being scheduled are anytime algorithms, which exhibit a

trade-off between runtime and solution quality (utility). We are thus given a per-

formance profile, a mapping vi(ti) from the total processing time ti allocated to process
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i to the expected utility value generated by that process. The problem is to find

a schedule, mapping time to process number, such that the total expected utility

U = ∑n
i=1 vi(ti) is maximized, subject to the constraint that all processing allocated

for process i occurs no later than di. The objective function here is not the same as for

AE2, and there is no notion of complete failure to find a solution. However, there is a

direct mapping between this version of deliberation scheduling and AE2 with known

deadlines, which we mention and exploit later on.

Although the problem is NP-hard, in the special case of diminishing returns, it

can be solved optimally in polynomial time. The diminishing returns requirement

is that the returns slope dvi(t)
dt be non-increasing in t. We define a similar notion of

diminishing returns for AE2 below.

Boddy and Thomas L Dean 1994 present a deliberation scheduling algorithm for

diminishing returns piecewise linear performance profiles. It scans from the latest

deadline backwards. In the current inter-deadline segment, select, from all profiles

whose deadline has not expired, the profile i with the greatest slope. Then allocate

to process i time sufficient to exhaust this slope segment or to reach the previous

deadline, whichever is first. When an earlier deadline is reached, additional profiles

become relevant, which may introduce profiles with a better slope. Upon scan is

completion, re-arrange the schedule into contiguous segments, in order of deadlines.

2.2 Job Scheduling

The minimum tardiness job scheduling problem (Yedidsion 2012) differs from deliber-

ation scheduling in that all processes must be run to completion, and no uncertainty

is involved. However, a process i can run faster by paying a cost ci, modeling the

allocation of additional resources. The total job i runtime is a known function Ti(c)

of the cost. The goal is to find costs and a schedule such that the sum of the costs is

minimized, while ensuring that all jobs finish before their respective deadlines. (Actu-

ally, Yedidsion 2012 allows processes to run beyond the deadline by a certain tardiness

value that is either to be constrained or minimized, but for our purposes we need

only refer to the variant that constrains the maximum tardiness to be zero.)

In job scheduling, a polynomial-time scheme is possible if the the speedup is

a diminishing-returns function of the cost, i.e. if T′i (c) = dTi(c)
dc is an always non-
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decreasing function of c. Note that Ti(c) is non-negative and T′i (c) < 0.

In the case of diminishing returns, it was shown that there exists an optimal sched-

ule such that

A) time allocations are contiguous, i.e. the schedule can be represented as a list of

start-length pairs (si, li);

B) the allocations are in order of the respective deadlines. We assume w.l.o.g. that

s1 ≤ s2 ≤ ... ≤ sn; and

C) the performance slopes T′i (c) obey T′i (ci) ≥ T′i+1(ci+1) for all 1 ≤ i < n.

As discussed below, these properties also hold for diminishing returns in AE2 (with

property C adapted as discussed below). Using these properties, Yedidsion 2012 pro-

vides an algorithm to find an optimal schedule in polynomial time, with a complexity

depending on speedup profiles Ti representation. An analytical representation ma-

nipulable in O(1) is assumed therein, resulting in a runtime O(n).

3 The Deliberation Scheduling MDP

We now address the AE2 problem of deliberation scheduling with uncertain dead-

lines. For simplicity, we initially assume that time is discrete and the smallest unit

of time is 1. Allowing continuous time is more complex because one needs to define

what is done if some time-slice is allocated to a process i, and that process terminates

before the end of the time-slice. Discretization avoids this complication.

We can now define our deliberation scheduling problem as an MDP, with dis-

tributions represented by their discrete probability function (pmf). Denote mi(t) =

Mi(t)−Mi(t− 1), the probability that process i completes after exactly t time units of

computation time, and di(t) = Di(t)− Di(t− 1), the probability that the deadline for

process i is exactly at time t. Without loss of generality, we can assume that Pi = 1:

otherwise modify the deadline distribution for process i to have di(−1) = 1 − Pi,

simulating failure of the process to find a solution at all with probability 1− Pi, and

multiply all other di(t) by Pi. This simplified problem we call SEA2. We formalize the

SEA2 MDP as an indefinite duration MDP with terminal states, where we keep track
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of time as part of the state. (An alternate definition would be as a finite-horizon MDP,

given a finite value d for the last possible deadline.)

The actions in the MDP are: assign the next time unit to process i, denoted by ai

with i ∈ [1, n]. We allow action ai only if process i has not already failed.

The state variables are the wall clock time T and one state variable Ti for each

process, with domain N ∪ {F}. Ti denotes the cumulative time assigned to each

process i until the current state, or that the process has completed computation and

resulted in failure to find a solution within the deadline. We also have special terminal

states SUCCESS and FAIL. Thus the state space is:

S = (dom(T)× ×
1≤i≤n

dom(Ti)) ∪ {SUCCESS, FAIL}

The initial state is T = 0 and Ti = 0 for all 1 ≤ i ≤ n.

The transition distribution is determined by which process i has last been sched-

uled (the action ai), and the Mi and Di distributions. If all processes fail, transition

into FAIL with probability 1. If some process is successful, transition into SUCCESS

with probability 1. More precisely:

• The current time T is always incremented by 1.

• Accumulated computation time is preserved, i.e. for action ai, Tj(t + 1) = Tj(t)

for all processes j 6= i.

• Ti(t) = F always leads to Ti(t + 1) = F.

• For action ai (assign time to process i), the probability that process i’s com-

putation is complete given that it has not previously completed is P(Ci) =

mi(Ti+1)
1−Mi(Ti)

. If completion occurs, the respective deadline will be met with probabil-

ity 1− Di(Ti). Therefore, transition probabilities are: with probability 1− P(Ci)

set Ti(t + 1) = Ti(t) + 1, with probability P(Ci)Di(Ti) set Ti(t + 1) = F (pro-

cess i failed to meet its deadline), and otherwise (probability P(Ci)(1− Di(Ti))

transition into SUCCESS (the value of Ti in this case is ‘don’t care’).

• If Ti(t + 1) = F for all i, transition into FAIL.

The reward function is 0 for all states, except SUCCESS, which has a reward of 1.
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3.1 Solution Complexity and Approximations

Solving the SEA2 MDP implies finding an optimal conditional (also called adaptive)

policy, which is a hard computational problem because the state space of the MDP

is exponential in n. We show below that the problem is NP-hard, but conjecture

that it is PSPACE-complete. As this is a meta-reasoning problem, we cannot afford

to devote a lot of computational resources to solving it; instead we attempt to solve

easier problems that may give approximately optimal solutions, or optimal solutions

to special cases. We begin by considering the optimal linear policy. A linear allocation

policy is simply a (possibly infinite) sequence A of integers, where A[t] = i means

‘assign time slice t to process i.’

There are two possible ways to execute the linear policy. The basic scheme (also

called “batch", or “non-adaptive") simply executes process A[t] at time t, except when

that process has already failed, in which case we leave the processor idle. Upon

success, we stop all the computations. Clearly, a better expected performance would

result from reallocating the time allocated to an already failed process to the next

process in the sequence that has not failed yet. We call this execution method the semi-

adaptive execution scheme. The semi-adaptive scheme is easy to implement during

execution, but hard to analyze, therefore our analysis below is for the basic execution

scheme. In some special cases discussed below, the basic and semi-adaptive schemes

are equivalent.

As shown below, finding the optimal linear policy is also NP-hard, although it

may be easy to approximate using a greedy scheme. However, even if the optimal

linear policy can be found, it is not necessarily an optimal solution to the MDP, as

shown in the following counter-example.

Example 1: We are given processes {1, 2, 3} with deadline distributions d1 = [0.5 :

−1, 0.5 : 2], d2 = [0.5 : −1, 0.5 : 4], and d3 = [0.4 : −1, 0.6 : 4]. The computation

completion time distributions are: m1 = [0.1 : 1, 0.9 : 2], m2 = [1 : 2], and m3 = [1 : 3],

the latter two being degenerate distributions, i.e. known runtimes times.

The optimal linear policy is A12 = (1, 1, 2, 2, ...), where the subscript denotes the

processes to which time is allocated. A12 delivers a timely solution if either process 1

succeeds (its deadline is not −1) or if process 1 fails yet process 2 succeeds, so we get

P12 = 0.5 + (0.5× 0.5) = 0.75. To see that A12 is optimal, consider the alternatives.

79



Paper C. Allocating Planning Effort when Actions Expire

Sequence A13 = (1, 1, 3, 3, 3, ...) succeeds only if process 1 succeeds, or if it fails after

1 time unit and process 3 succeeds. If process 1 takes too long to fail, process 3 will

not meet its deadline. We get: P13 = 0.5 + 0.5× 0.1× 0.6 = 0.53. Any sequence A3

starting with process 3 succeeds only if process 3 succeeds, with P3 = 0.6. All other

sequences are dominated by A3, A13, or A12, thus A12 is the (linear) optimum.

However, the following adaptive policy is better than A12: Run process 1 for one

time unit. If it terminates with success, then we are done. If it terminates with

failure, then run process 3. If it has not terminated, run process 1 for one more

unit and allocate the two subsequent time units to process 2. The probability of a

timely successful solution for this policy is greater than P12, because in the case where

process 1 fails in one time unit, we take advantage of this knowledge to run process 3

instead of process 2 because it has a higher probability of success and can still finish

within its deadline.

Whether linear plans are near-optimal is an open problem. However, we show

below that in the special case where the deadlines are known, the optimal linear

policy is also an optimal solution to the MDP. Unfortunately, finding an optimal linear

policy remains NP-hard. But if, in addition, the performance profile obeys a certain

diminishing returns criterion, the optimal linear policy (and thus the true optimal

policy) can be found in polynomial time. Although realistic cases do not necessarily

exhibit these properties, we will see that the solution to the special case can be used

effectively as part of an efficient heuristic solution to the MDP.

We begin by formulating the objective function in the cases of a linear policy and

a linear contiguous policy. For simplicity, we provide the equations for the basic exe-

cution scheme. For a given scheduled sequence A, we define an individual allocation

for a task i as a function Ai from non-negative integers to {0, 1}. Ai(t) is 1 if time slot

t allocated for process i and 0 otherwise. Denote by Si(t) the total number of time

slots allocated to i on or before t, i.e.: Si(t) = ∑t
t′=1 Ai(t′). Then the probability that

process i under allocation Ai will find a timely solution is

PSi(Ai) = ∑
t

Ai(t)mi(Si(t))(1− Di(t))

In a contiguous linear policy, Ai(t) contains only a single contiguous block of 1’s.

A policy can then be represented as an array of (si, li) pairs denoting (start, length) of
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the processing time, respectively, and we can re-write PSi as

PSi(Ai = (si, li)) =
li

∑
t=0

mi(t)(1− Di(t + si))

With this representation, the problem becomes: Find an array of pairs Ai = (si, li)

maximizing

PSUCC = 1−∏
i
(1− PSi(Ai))

Optimization of a product term is inconvenient. We can equivalently minimize prob-

ability of failure PFAIL, which is 1− PSUCC. Taking logarithms, we seek to minimize:

log(PFAIL)=log(∏
i
(1−PSi(Ai)))=∑

i
log(1−PSi(Ai)) (C.1)

An important special case is known deadlines, where we can re-write the proba-

bility of success for process i as:

PSi(Ai) =∑
t≤di

Ai(t)mi(Si(t))=∑
t≤Si(di)

mi(t)=Mi(Si(di)) (C.2)

because 1 − Di(t) = 1 for all t ≤ di and zero for t > di. Using this probability

of success in Equation C.1 and using LFi(.) to denote the log probability of failure,

log(1−Mi(.)), the objective function to minimize becomes

log(PFAIL) = ∑
i

LFi(Si(di))) (C.3)

Note that in this case of known deadlines, we can map SEA2 into an equivalent

(time-dependent planning) deliberation scheduling problem simply by creating per-

formance profiles vi(t) = −LFi(t), and keeping the same deadlines. Additionally, if

all the known deadlines are also equal, we now have a problem equivalent to that of

allocating runtimes in algorithm portfolios (Gomes and Selman 2001), where we wish

to maximize the probability that some algorithm in the portfolio can find a solution

before the (common) time limit per problem instance.

Theorem C.1

In SEA2 with known deadlines, the optimal linear contiguous policy is an optimal

policy for the MDP.

Proof (outline): Consider any SEA2 MDP policy for known deadlines, represented

as a decision tree. Each state-node has a single action edge, leading to a stochastic
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(chance) node. Each chance node has one or more outgoing edges, each leading to a

state node. Given a (state, action) pair ((T, T1...Tn), ai), there are two possible cases. If

T ≥ di, the deadline for process i is past, and process i fails to find a timely solution

(with probability 1): the respective chance node is degenerate, and has only one next

next state with Ti = F. If T < di, the following chance node has only two outgoing

edges: either process i terminates successfully (reaching a terminal state SUCCESS),

or does not terminate (and the next state has T and Ti incremented by 1). That is,

only the latter one edge leads to a node that can have outgoing action edges. Thus, a

maximum-length path in the tree determines a unique sequence of actions A, which

is a linear policy equivalent to this MDP policy.

Now consider any linear policy. The probability of success for process i for known

deadlines (Equation C.2) depends only on the total processing time given to process

i before its deadline di. Thus, any schedule that allocates processing time beyond the

deadline (called a tardy schedule) can be improved (or at least made no worse) by re-

allocating such processing time to some other process. We thus consider below only

non-tardy schedules.

Under our SEA2 simplifying assumption that Pi = 1, if a process completes the

computation this ends in SUCCESS. Since Equation C.2 depends only on the to-

tal amount of computation time (before the deadline) for process i, rearranging the

schedule by moving allocations makes no difference as long as the resulting sched-

ule remains non-tardy. Therefore the schedule can be rearranged to make allocations

contiguous, by making them appear in the same order as the deadlines (i.e. si ≤ sj is

di ≤ dj). Thus the optimal contiguous linear sequence is also an optimal solution to

the MDP. �

Note that for non-tardy schedules with certain deadlines, since a completed computa-

tion never fails, the simple execution scheme and the semi-adaptive execution scheme

are equivalent. Although it is nice to know the form of optimal policies for known

deadlines, we have:

Theorem C.2

For a compact representation of the distributions, finding the optimal contiguous

linear SEA2 policy in the case of known deadlines is NP-hard.

Proof (outline): by reduction from the optimization version of knapsack ((Garey and
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Johnson 1979) problem [MP9]):

Definition C.1 (Knapsack problem)

Given a set of items S = {s1, ...sn}, each with a positive integer weight wi and value

vi, a weight limit W, find a subset S of S such that the total weight of S is at most W

with a maximal total value.

In the reduction, each process represents an item in the Knapsack problem. We

only need degenerate performance profiles: for each process i, let its deadline be

di = W, and its performance profile Mi be a piecewise constant function:

Mi(t) =


0, t < wi

εvi, wi ≤ t ≤W

1, W < t

ε is chosen such that the probability of success of at least one process is "almost"

as much as the sum of success probabilities of all the selected processes. Let H =

maxn
i=1 vi. Setting ε ≤ 1

2H2n3 , we can show that every set of items (processes) S we

have:

ε ∑
si∈S

vi ≥ PSUCC(S) = 1−∏
si∈S

(1− εvi) > ε(( ∑
si∈S

vi)− 1)

Let S be an optimal contiguous schedule. W.l.o.g. we can assume that the process-

ing time assigned to each process si ∈ S is equal to wi, and that the sum of processing

times is at most W. Abusing the notation, we use S to also denote the set of items si

in the Knapsack problem corresponding to the processes assigned time wi in S. The

Knapsack value of S is V = ∑si∈S vi. By construction, the sum of weights of the items

in S is at most W, so S is a Knapsack solution.

Assume, in contradiction, that S is suboptimal. Then exists an (integer) Knapsack

solution S′, with value V′ ≥ V + 1. Taking S′ as a schedule (assigning time wi to each

process si ∈ S′) creates a schedule where all processes run before time W as well, with

success probability:

PSUCC(S′) = 1− ∏
si∈S′

(1− εvi) > ε(( ∑
si∈S′

vi)− 1)

≥ ε( ∑
si∈S

vi) ≥ PSUCC(S)
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that is, schedule S′ has a greater success probability than S, a contradiction. �

Note that the seemingly obvious proof of using the mapping between our de-

liberation scheduling and the NP-hard equivalent deliberation scheduling in time-

dependent planning does not generate a correct NP-hardness proof, as the mapping

involves an exponent. This results in number descriptions of exponential size given

the size of the description of the problem. Due to Theorem C.1, this result (Theorem

C.2) also implies NP-hardness of the linear (not necessarily contiguous) policy, as well

as the NP-hardness of solving the general SEA2 MDP. Observe that a compact repre-

sentation of the MDP is assumed, rather than a complete transition distribution array,

and that solving the MDP in the general case may even be PSPACE-hard (conjecture).

As the linear policy optimization is NP-hard, we now consider further restrictions,

and in particular consider the case of diminishing logarithm of returns in the perfor-

mance profile. That is, suppose that LFi(t + 1)− LFi(t) is a non-decreasing function

of t for all i.
Theorem C.3

The optimal SEA2 policy for the case of known deadlines and diminishing logarithm

of returns can be computed in polynomial time.

Proof (outline): Although it seems to be a different problem entirely, the theorem

follows from results on job scheduling with diminishing returns (Yedidsion 2012).

The problems are equivalent when we map log probability of failure into costs, both

of which need to be minimized. We set the speedup function such that Ti(LFi(t)) =

Ti(log(1− Mi(t))) = t, i.e. set Ti(c) = exp(1− M−1
i (c)), where M−1

i is the inverse

function of Mi. Then use any algorithm for the job scheduling problem to get an

optimal solution and map it back to SEA2. �

If we have an analytical representation of LFi(t), we can use the above conversion

and the algorithm of Yedidsion 2012 directly. Likewise, if our distribution LFi(t)

is piecewise linear diminishing returns, we can use the algorithm for deliberation

scheduling in time-dependent planning (Boddy and Thomas L Dean 1994).

3.2 SEA2 with Diminishing Returns

As in general the performance profile may not be provided analytically, and may also

not be piecewise linear, we adapt the above ideas to apply to the discrete distribution
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representation that we have in SEA2. Properties A and B of an optimal job schedule

hold in SEA2. The solution property C for the discrete case is slightly different, the

inequality needed here is:

LFi(li)− LFi(li − 1) ≥ LFi+1(li+1 + 1)− LFi+1(li+1)

Proving this condition is similar to the proof for the continuous case. That is, if

condition C does not hold, then we have for some i:

LFi(li)− LFi(li − 1) < LFi+1(li+1 + 1)− LFi+1(li+1)

where modifying the deliberation schedule to have: li ← li − 1, li+1 ← li+1 + 1,

si+1 ← si+1 − 1, decreases logarithm of probability of failure, without causing it to be

tardy.

In the algorithm, which we call ScheduleDR, we keep a queue Q containing the

current active profiles, and for each profile the currently allocated time li. Q is kept

sorted in non-decreasing order of the gain gi(t) = LFi(t)− LFi(t− 1). Psuedo-code is

given in Algorithm 1.

By construction, the complexity of ScheduleDR is O((n + d) log n), where d =

maxn
i=1 di, the latest deadline. Note that this algorithm is essentially the same as

the deliberation scheduling for piecewise linear profiles (Boddy and Thomas L Dean

1994), adapted to the discrete case.

3.3 Non-diminishing returns

In general, as well as in the planning application, the Mi distributions do not have

diminishing returns, as we expect Mi(t) to be near zero until some critical value of t

(the expected planning time for process i, also called “startup time"), and then quickly

increase, followed by a region that behaves according to a diminishing returns rule.

An additional complication is that the deadlines can be stochastic. Therefore, we

cannot directly use ScheduleDR.

Nevertheless, if the time allocated to each process is at least equal to the critical

value, thereby reaching the diminishing returns region, it is still possible to use the

algorithm for diminishing returns, as long as we make sure that the algorithm does

not ignore processes that have a significant startup time. Therefore, we can convert
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Algorithm 1: Scheduling for Diminishing Returns

1 ScheduleDR(Profiles)

2 For all 1 ≤ i ≤ n, let li = 0

3 Let Q = ∅; Order = ∅

4 for t = maxn
i=1 di downto 0 do

5 for each i for which di = t do

6 Insert profile i into Q

7 Prepend i to Order

8 Retrieve profile j from Q

9 Increment lj, and re-insert into Q

10 Let t = 0

11 for j from 1 to n do

12 Let sOrder[j] = t

13 Let t = t + lOrder[j]

14 Return the pairs (si, li) of all profiles.

such profiles that have a startup time into diminishing returns by modifying them to

have a rampup starting at 0 (see below).

Under the assumption that all processing time is allocated to process i, starting at

time 0, the success distribution for process i is:

fi(t) = PSi(Ai = (0, t)) = Pi

t

∑
t′=0

mi(t′)(1− Di(t′))

Define the most effective computation time for process i under this assumption to be:

ei = argmin
t

log(1− fi(t))
t

Now, the function Mi can be modified in the region from 0 to ei to have linear slope

in probability of failure. That is, set:

LFi(t) = t
log(1−Mi(ei))

ei

for all 0 ≤ t ≤ ei. We now have performance profiles with initially diminishing re-

turns. (For some unimodular distribution this actually results in diminishing returns

for all t.)

86



3. The Deliberation Scheduling MDP

We also need to handle the uncertain deadlines. We do so by setting a deadline

proxy value di(th) as a function of Di and a “confidence level threshold" 0 ≤ th ≤ 1,

defined by: di(th) = the first t such that Di(t) ≥ th. Another possibility is to use the

expected value of the deadline as if it were a known deadline.

After making these modifications, we can use the algorithm for diminishing re-

turns to create a schedule that is optimal for the modified profiles and the proxy

deadlines. However, the resulting schedule may be very far from optimal, as in fact

the time allocated for many processes can be significantly lower than its most effective

computation time. We have attempted such a solution, and the empirical results were

not good. Therefore, other than mentioning these negative results for completeness,

we do not further elaborate this method. Nevertheless, some of the intuitions and

definitions from this section are still usable in the better-performing real-time greedy

scheme we describe below.

3.4 Real-time Deliberation Scheduling

Faster meta-reasoning is achievable if we try to allocate computation time just for the

first process to run, and defer the rest of the scheduling. This makes sense as in prac-

tice the initial computations actually may provide additional information, which the

full scheduling does not take into consideration. Note that algorithm ScheduleDR()

tends to allocate computation time for a process that has an early deadline, but may

decide to throw it out (allocate it zero processing time) if its performance slope is too

low or it is unlikely to complete computing before its deadline.

The intuition from the diminishing returns optimization is thus to prefer the pro-

cess i that has the best utility per time unit. However, it is also important to allocate

the time now to a process i that has a deadline as early as possible, as this is most

critical. We therefore suggest the following greedy algorithm. Whenever assigning

computation time, allocate td units of computation time to process i that maximizes:

Q(i) =
α

E[Di]
− log(1− fi(ei))

ei
(C.4)

where α and td are positive empirically determined parameters, and E[Di] is the ex-

pectation of the Di distribution, which we use as a proxy for “deadline of process

i". The α parameter trades off between preferring earlier expected deadlines (large α)

87



Paper C. Allocating Planning Effort when Actions Expire

and better performance slopes (small α).

4 Empirical Evaluation

In order to empirically evaluate our scheduling methods, we generated several types

of performance profiles and deadline distributions based on the following distribu-

tions: Uniform (U), with minimal range value a = 1 and maximal range value b

uniformly drawn from {[5, 10], [50, 100], [100, 200], [150− 300]}, we denote the set of

possible [a− b] ranges by R; Boltzmann (B), truncated exponential distribution with

the diminishing return property, using a λ ∈ {0.1, 1, 2} and range drawn from R;

Truncated Normal Distribution (N) with µ ∈ {5, 50, 100, 150}, σ ∈ {1, 5, 10}, and range

drawn from R;

Finally, we used distributions collected from search trees of the Robocup Logistics

League (Niemueller et al. 2015) domain generated by the OPTIC planner (denoted

by P in the table). To acquire the distribution, A* was executed from each node of

the dumped search tree. The result of each of these searches provides the number

N(v) of expansions necessary to find the goal under a node v. These numbers were

binned separately for each (h(v), g(v)) pair. Then, a number of nodes V in the tree

was selected randomly, each one standing for a process. For each such v ∈ V, the

list of numbers of expansion in the bin corresponding to g(v) and h(v) was treated

as a distribution over completion times (in terms of number of expansions). Likewise

for creating the latest start times for the resulting plan (the deadline distribution).

When using our method as part of a planner, one would need to create such statistics

on-the-fly.

Experiments were both with unknown deadline (UK) or with a known deadline

(K) which was randomly drawn from the corresponding distribution before the exe-

cution.

We compared the results of ScheduleDR and the greedy scheme to several naive

schemes: (1) random - allocate time to a random process that did not already fail;

Most promising plan (MPP) - allocate time to the plan with the highest probability to

finish successfully and meet the deadline, in case of failure, the algorithm chooses the

next most promising plan and repeats the process; Round-robin (RR) - allocate time
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units to each non-failed process in equal portions and in circular order. Whenever

possible, we also compared with the optimal MDP solution computed using value-

determination of the Bellman equation. Unfortunately the space required for the MDP

is O(dn) just for enumerating the state space, even with a compact representation of

the transition distribution. Although the runtime is O(dn+1), space was the main

limiting factor, so we could only compute the optimal score for a few of the smallest

instances. We tested ScheduleDR using th ∈ {0.2, 0.5, 0.7, 1} and greedy with α ∈

{0, 0.2, 0.5, 1, 20}, td ∈ {1, 5, 10}. However, the reported results include only the best

configuration for each algorithm: th = 0.5, alpha = 0, and td = 1.

Evaluating the quality of a solution (policy) is not a trivial task, especially for

adaptive policies which depend on the state to make a decision. In order to tackle this

issue, we ran the algorithms on each setting for 500 attempts and reported the fraction

of successful runs out of the total number of attempts as the solution quality. The re-

sults are shown in Table E.1. The Q column indicates the solution quality (probability

of success using the policy created by the algorithms); the T column is the runtime

in seconds. The rows denoted “average" are average solution quality and geometric

mean of the runtimes. As expected, ScheduleDR had the best performance when us-

ing known deadlines with diminishing returns performance profiles (B). However, in

most other cases ScheduleDR performed poorly, especially when the deadlines were

unknown. Greedy resulted in the best policy in most cases, and the best average so-

lution quality for both known and unknown deadlines. Overall, the greedy scheme

demonstrates a significant improvement over the naive schemes in terms of solution

quality. Nonetheless, greedy had the worst runtime out of all other algorithms (except

for the MDP) with an average runtime of 1.24 seconds. Note that the time reported

is the total time for an entire policy evaluation, therefore, it includes hundreds of de-

cisions at different points. Thus, despite being the slowest of the efficient algorithms,

the greedy scheme is sufficiently fast to be used for metareasoning.
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K / UK Dist # pr
MDP Greedy ScheduleDR MPP RR Random

Q T Q T Q T Q T Q T Q T

K

B

2 0.67 0.05 0.61 0.01 0.67 0.00 0.70 0.00 0.55 0.00 0.54 0.00

5 0.72 0.04 0.82 0.00 0.61 0.00 0.54 0.00 0.57 0.00

10 0.60 0.07 0.88 0.00 0.71 0.00 0.48 0.00 0.51 0.00

100 0.81 0.74 0.99 0.01 0.91 0.03 0.62 0.00 0.60 0.00

N

2 0.61 7.49 0.56 0.01 0.45 0.00 0.33 0.00 0.04 0.00 0.07 0.00

5 0.83 0.02 0.72 0.01 0.27 0.00 0.01 0.00 0.03 0.00

10 0.93 0.04 0.41 0.01 0.09 0.00 0.00 0.00 0.03 0.00

100 1.00 0.20 0.70 0.03 0.23 0.02 0.00 0.00 0.00 0.00

U

2 0.68 1.20 0.61 0.04 0.65 0.01 0.50 0.00 0.47 0.00 0.48 0.00

5 0.90 0.13 0.88 0.01 0.75 0.00 0.49 0.00 0.47 0.00

10 0.98 0.28 0.98 0.01 0.66 0.01 0.44 0.00 0.44 0.00

100 1.00 2.36 1.00 0.02 0.80 0.03 0.42 0.00 0.45 0.00

P

2 0.72 0.02 0.79 0.00 0.01 0.00 0.01 0.00 0.04 0.00

5 0.78 0.06 0.81 0.07 0.79 0.02 0.38 0.02 0.54 0.02

10 1.00 0.05 0.87 0.10 0.99 0.00 0.85 0.01 0.82 0.01

100 1.00 0.42 0.91 0.25 0.86 0.04 0.00 0.03 0.04 0.05

Known Average 0.82 0.08 0.78 0.01 0.58 0.00 0.33 0.00 0.35 0.00

UK

B

2 0.68 147.34 0.61 0.07 0.35 0.00 0.64 0.00 0.59 0.00 0.57 0.00

5 0.65 0.18 0.36 0.00 0.63 0.01 0.60 0.00 0.60 0.00

10 0.70 0.45 0.45 0.00 0.66 0.04 0.62 0.00 0.62 0.00

100 0.70 5.45 0.44 0.01 0.65 0.68 0.58 0.00 0.61 0.00

N

2 0.66 26.95 0.63 0.07 0.37 0.01 0.20 0.00 0.14 0.00 0.13 0.00

5 0.70 0.19 0.35 0.01 0.09 0.00 0.02 0.00 0.06 0.00

10 0.65 0.41 0.30 0.01 0.15 0.01 0.00 0.00 0.02 0.00

100 0.76 4.02 0.32 0.05 0.06 0.05 0.00 0.00 0.00 0.00

U

2 0.73 103.28 0.68 0.33 0.39 0.01 0.53 0.01 0.54 0.00 0.55 0.00

5 0.70 1.25 0.43 0.01 0.57 0.03 0.43 0.00 0.45 0.00

10 0.78 2.07 0.46 0.02 0.59 0.05 0.47 0.00 0.44 0.00

100 0.86 16.56 0.52 0.03 0.59 0.16 0.43 0.00 0.44 0.00

P

2 0.61 0.01 0.24 0.00 0.46 0.00 0.47 0.00 0.52 0.00

5 0.90 0.05 0.54 0.04 0.45 0.03 0.56 0.03 0.59 0.06

10 0.90 0.45 0.32 0.06 0.62 0.06 0.60 0.04 0.62 0.07

100 0.85 3.54 0.77 0.13 0.38 0.01 0.20 0.89 0.33 0.50

Unknown Average 0.73 0.47 0.41 0.01 0.45 0.02 0.39 0.00 0.41 0.00

Total Average 0.77 0.20 0.60 0.01 0.52 0.01 0.36 0.00 0.38 0.00

Table C.1: Solution quality and runtime of the algorithms on different settings
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5 Discussion

This paper defined a deliberation scheduling problem that models optimization of the

probability of success for finding a timely plan that depends on external events. This

dependence can cause a plan of action to expire, and thus our deliberation scheduling

problem is similar to that of time-dependent planning, though with a different objec-

tive function. In fact, there is a direct mapping between these deliberation scheduling

problems that we can exploit. However, in our case the time at which the actions

expire (also called deadlines) are uncertain, adding complexity to our version of the

problem. An additional surprising connection exists to job scheduling, where some

results similar to those in time-dependent planning are useful.

We introduce a formal MDP model of our deliberation scheduling problem, and

analyze its complexity. As solving the MDP is computationally hard, we examine

the possibility to provide simple ("linear") schedules as a solution, rather than a full

MDP policy. Such solutions are shown by counter-example to be suboptimal, except

when the problem is restricted to known deadlines, in which case the optimal con-

stant schedule is also an optimal solution to the MDP. Unfortunately we show that

even finding the optimal simple schedule is NP-hard. By examining the relationship

to time dependent planning and to job scheduling, we can use similar results for the

further restricted case of an appropriate form of diminishing returns, where an op-

timal solution is possible in low-order polynomial time (Boddy and Thomas L Dean

1994; Horvitz 2001; Yedidsion 2012).

As the restrictions that allow polynomial-time optimal solutions usually do not

hold in practice, we develop algorithms that use intuitions from the special case.

These are evaluated empirically; one of them, a greedy scheduling algorithm, seems

to be close to optimal for many distributions.

Nevertheless, several issues remain open, both theoretical and practical. Some im-

mediate theoretical questions are: Can the optimal policy be approximated in polyno-

mial time within a small constant factor (whether multiplicative or additive)? What

is the actual complexity class of the deliberation-scheduling MDP? On the practical

side, faster algorithms with good practical results, are needed. Dynamic algorithms

are especially important due to the main motivation of our problem, which comes

91



Paper C. Allocating Planning Effort when Actions Expire

from allocating time for search. For example, the different “processes" could actually

represent different nodes in a planner’s search for a timely plan. In this case, how-

ever, nodes are added (and possibly pruned) during the search, thereby adding and

deleting processes that need to be scheduled, in some cases modifying node statis-

tics. The allocation effort thus needs to be very fast, but may take advantage of there

being only a few changes in the setup each time the search effort is reallocated. An

adaptation of our greedy scheme is likely to be applicable, but additional research is

required before it can be fully integrated into an existing planner.
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Abstract

If a planning agent is considering taking a bus, for example, the time that passes during its

planning can affect the feasibility of its plans, as the bus may depart before the agent has found a

complete plan. Previous work on this situated temporal planning setting proposed an abstract

deliberation scheduling scheme for maximizing the probability of finding a plan that is still

feasible at the time it is found. In this paper, we extend the deliberation scheduling approach

to address problems in which plans can differ in their cost. Like the planning deadlines,

these costs can be uncertain until a complete plan has been found. We show that finding a

deliberation policy that minimizes expected cost is PSPACE-hard and that even for known

costs and deadlines the optimal solution is a contingent, rather than sequential, schedule. We

then analyze special cases of the problem and use these results to propose a greedy scheme that

considers both the uncertain deadlines and costs. Our empirical evaluation shows that the

greedy scheme performs well in practice on a variety of problems, including some generated

from planner search trees.

1 Introduction

Situated temporal planning (Cashmore et al. 2018) is a model for the planning prob-

lem faced by an agent for whom significant time passes as it plans. In this setting,

external temporal constraints (e.g., deadlines) can be introduced depending on the ac-

tions included in a plan. For example, taking the 9:00 bus introduces a new constraint

that the agent must be at the bus stop by 9:00. These plan-specific constraints make

the problem different than real-time search (e.g., (Koenig and Sun 2009; Sharon et al.

2014; Cserna, Ruml, et al. 2017; Cserna, Doyle, et al. 2018)), deadline-aware search

(Dionne et al. 2011), or Best-first Utility Guided Search (Burns et al. 2013).

Situated temporal planning calls for a search strategy different from traditional

offline search algorithms, as the choice of which node to expand must account for the

fact that time spent exploring one part of the search space passes in the real world and

may invalidate other partial plans. Shperberg et al. 2019 suggested a rational meta-

reasoning (Russell and Wefald 1991) scheme for situated temporal planning. They

formalized the problem as an MDP (called AE2 for Allocating Effort when Actions
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Expire) whose actions allocate a unit of time to one of n running processes, showed

that solving this MDP optimally is NP-hard, and suggested a greedy decision rule (de-

noted P-Greedy henceforth) that worked well in their empirical evaluation. However,

P-Greedy attempts merely to maximize the chance of finding a timely plan, without

considering plan cost. For example, if taking a taxi does not introduce a deadline but

is much more expensive than taking the bus, P-Greedy always chooses to take the

taxi, even if there is very little uncertainty about whether the agent could catch the

bus on time.

In this paper, we extend the metareasoning problem for situated temporal plan-

ning to include plan cost. First, we provide a formal characterization of the metarea-

soning problem with plan costs as an MDP (which we call ACE2 for Allocating Com-

putational Effort when Actions with Costs Expire), and show that optimally solving

this MDP is PSPACE-complete. We also show that even when the deadlines and costs

are known with certainty, an optimal solution for this problem requires a contingent

policy, in contrast with AE2 with known deadlines, where previous work showed that

an optimal policy can be linear. Finally, we provide an analytical solution to the spe-

cial case where only one process may be scheduled, and use this solution to construct

a greedy decision rule for the general case. Our empirical evaluation suggests that

the new greedy scheme performs significantly better than various baseline algorithms

and the P-Greedy scheme on benchmarks featuring several families of distributions,

including distributions taken from actual runs of the OPTIC planner (Benton et al.

2012). This work brings situated temporal planning closer to practical applicability,

as plan cost is often an important factor in applications.

2 Problem Statement: Cost vs Timeliness

The desire to achieve one’s goals as cheaply as possible, as well as in a timely manner,

induces a tradeoff between plan cost and the probability of successfully finding a

plan that is still executable at the time it is found (except in the rare case where all

potential plans have equal cost). In order to make the metareasoning problem well

defined, we introduce a cost of failure c f and require minimization of the expected

cost over outcomes representing either costs of timely plans or the cost of failure.
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When the value of c f is high, optimal policies will aim to maximize the probability

of finding a plan, while for low values of c f , optimal policies will focus on finding

a cheap plan, at the risk of not finding a plan at all. Moreover, the simpler problem

of maximizing the probability of success is a special case where the cost of all correct

and timely plans is zero and c f > 0.

Following Shperberg et al. 2019, we abstract away from any specific planning

methodology and merely posit the existence of n computational processes, all at-

tempting to solve the same problem, and a single computing core for running all of

the processes. When a process completes, it delivers a solution plan with a known

execution cost. However, every solution also has a (possibly unknown) deadline, and

if the solution is delivered at a time that is later than that deadline, it cannot be used.

A solution delivered at or before its deadline is called timely.

We can now define the ACE2 problem, in which the objective is to minimize the

expected cost of the timely solution found by the set of processes. The following

distributions are assumed to be known: (i) Di(t), the cumulative distribution function

(CDF) over wall clock times of a random variable denoting the deadline for each

process i. (ii) Mi(t), the CDF giving the probability that process i will terminate

when given an accumulated computation time of t or less. (iii) Ci, a probability mass

function (PMF) over solution costs for process i. We denote by dmaxi the time of the

latest possible deadline for process i, i.e. the smallest t for which Di(t) = 1.

The true values of the deadline for process i and the cost of plan i are revealed

only when process i completes its computation. We call such a process completed,

otherwise it is incomplete. The cost of a plan of an incomplete process, as well as a

completed process that has failed to find a timely solution, is assumed to be c f . Thus,

the probability of a process failing to find a plan at all can be incorporated into its

cost distribution.

The problem is to find a policy for allocating the computing core’s time among

the processes, as well as optionally stopping deliberation and executing a complete

plan already computed by one of the processes, so as to minimize expected cost of

the executed plan. Note that in AE2 there is no need to include an explicit decision

to start executing a plan, as once the first feasible plan is found, there is no benefit

in searching for better plans. However, when cost is considered, even after the first
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timely plan is found, we may want to delay executing it in the hope of finding a better

plan.

When modeling processes solving the same problem, the distributions over costs

and deadlines may have dependencies, complicating both the distribution estimation

in practice and the deliberation scheduling. In fact we show below that optimally

solving ACE2 with dependencies is PSPACE-hard. Therefore, we make the metarea-

soning assumption that all these distributions are independent, which in certain sim-

ple special cases allows for efficient solutions. Since these simple cases do not cover

our desired scenarios, we also present a greedy algorithm for effectively handling the

problem, based on intuitions from the special cases.

3 Deliberation Scheduling MDP with Costs

Following Shperberg et al. 2019, we formulate a discrete-time version of the problem,

DACE2, allowing us to model the problem as an MDP. We define mi(t) = Mi(t) −

Mi(t− 1), the probability that process i completes after exactly t steps of computation,

and di(t) = Di(t)− Di(t− 1), the probability that the deadline for process i is exactly

at time t.

We formalize the DACE2 MDP as an indefinite duration MDP with terminal states,

where we keep track of time as part of the state. The state variables are the wall clock

time T, and one state variable Ti for each process, with domain N, which represents

the cumulative time assigned to process i so far. In addition, we have state variables

cti and dli, the cost and deadline (respectively) of each process that has completed

its computation. We also have a special terminal state DONE. Since the cti and dli

variables are irrelevant for incomplete processes, and the time assigned to a process

is irrelevant to completed processes, the state space can be stated as:

S = {DONE} ∪(
dom(T)× ×

1≤i≤n

(dom(Ti) ∪ (dom(cti)× dom(dli)))
)

There are 2n actions in the MDP, {a1, . . . , an} ∪ {g1, . . . , gn}. Action ai assigns the

next unit of computation time to incomplete process i. Action gi denotes giving the

plan computed by completed process i the go-ahead to execute, and transitioning into
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a terminal state. Note that for every process i, either ai or gi is applicable but not both.

The initial state S0 has T = 0 and Ti = 0 for all 1 ≤ i ≤ n. We use the notation

T[S0] = 0 and Ti[S0] = 0 (i.e. state variable as a function of the state) as a shorthand

to denote this. The transition distribution of the action ai is determined by the Mi and

Di distributions. If a process has just completed its computation in the transition from

state S to state S′, then cti[S′] and dli[S′] are assigned according to the actual deadline

and cost of the solution obtained by process i. The state variables for other processes

remain unchanged.

More precisely, when transitioning from state S to S′ by applying action ai: (1) The

current time T[S′] = T[S] + 1. (2) The computation time of every other process re-

mains unchanged, that is ∀j 6= i : Tj[S′] = Tj[S]. (3) The probability that process

i’s computation completes in this transition is Pterm = mi(Ti[S]+1)
1−Mi(Ti[S])

. Therefore, with

probability 1− Pterm, process i does not complete and we have Ti[S′] = Ti[S] + 1. Con-

versely, with probability Pterm, process i completes. In this case, cti[S′] and dli[S′] are

assigned values according to distributions Ci and Di, respectively. For example, in the

independent cost case, for all x ≤ dmaxi , dli[S′] = x with probability di(x); if x < T[S′],

then cti[S′] = c f , otherwise, for all y, cti[S′] = y with probability Ci(y).

The reward for executing action ai before the last deadline of process i has passed

(T[S] < dmaxi) is always 0, but when ai is applied in state S with T[S] ≥ dmaxi , the

reward is −c f . In the latter case, transition into S′ = DONE with probability 1. This

exception is in order to avoid useless allocation of time to processes where certainly

no timely plan can be found, as well as infinite allocation action sequences.

When applying action gi in state S, that is, executing the plan found by completed

process i, the transition is always to terminal state S′ = DONE. The reward in this

case is −cti[S] if dli ≥ T[S] and −c f otherwise.

Although the MDP is a formal statement of the DACE2 problem, we assume that

it is specified implicitly through a compact representation of the distribution (includ-

ing any possible dependencies), as the state space of the MDP is exponential in the

number of processes.
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4 Theoretical Analysis of ACE2

4.1 Complexity of ACE2

Optimally solving the ACE2 problem is intractable. In fact, for the general case with

unrestricted dependencies we have:

Theorem D.1

Finding the first action in an optimal policy for a DACE2 problem is PSPACE-hard.

Proof. By reduction from quantified Boolean formulas (QBF). Let α be a QBF specified

in prenex normal form, i.e.:

α = ∃x1∀y1...∃xn∀ynΦ(x1, y1, ...xn, yn) (D.1)

with Φ being a 3-CNF Boolean formula in the xi, yi variables. Determining the truth

of α, or equivalently the existence of a policy for assigning the xi such that Φ is always

satisfied, is PSPACE-hard (Garey and Johnson 1979, problem LO11).

We transform an instance of QBF into an instance of DACE2 with 2n+ 2 processes,

whose optimal allocation policy reveals the truth status of α. Among these processes,

there are 2n ‘variable setting’ processes pj
xi , one for each of the n existential variables

and for each j ∈ {t, f }. Each pj
xi always takes exactly 1 time unit. Allocating time to

pj
xi represents assigning the value j to xi. The uncontrollable yi variables are modeled

using the stochastic cost outcomes of the pj
xi processes. Let c f = 2n+2. Each pj

xi has

three possible costs: 1)
c f
2 , representing an outcome where the universally quantified

variable yi that follows xi is false, 2)
c f
2 + 1 representing an outcome in which yi is

true, and 3) c f , representing a "failure" or that the process is incomplete (because it

was not allocated any computation time yet). As a shorthand, we denote the event

C(pj
xi) =

c f
2 by pj

xi,0
, the event C(pj

xi) =
c f
2 + 1 by pj

xi,1
, and C(pj

xi) = c f by pj
xi,I

.

The remaining two processes, denoted by pdefault and psuccess are designed to be

selected according to whether α is true. pdefault always takes time 2n + 1 to complete

and delivers a solution with a known cost of 1. We show below that the optimal policy

schedules the a action followed by the g action for pdefault just when α is false.

When α is true, we show that it is optimal to schedule the pj
xi corresponding to a

satisfying assignment of α followed by psuccess, which always takes time n + 1, has a
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cost distribution depending deterministically on the pj
xi , with cost 0 or c f , depending

on other costs, as defined below. If psuccess is run and delivers a solution of cost 0,

the optimal policy then executes that solution (i.e. do the g action for psuccess). The

deadline for all processes is D = 2n + 1, so by construction one can either run pdefault,

or run n variable-setting processes and then psuccess before the deadline.

To test the truth of α, we have two tasks: enforcing ordered setting of the xi, and

letting the cost of psuccess be 0 if α is true. We now define the details of the probability

distribution over the costs for the pj
xi,1

and psuccess. First, we essentially force one of

each pj
xi pair to be allocated in order to make psuccess achieve cost 0. For j ∈ { f , t} and

n ≥ i ≥ 2,

P(pj
xi,I
|p f

xi−1,I ∧ pt
xi−1,I) = 1

Note the dependence of the cost distribution on the observed costs of the preceding

pj
xi processes. The cost distribution for completed processes (for conciseness, we omit

this conditioning event in the equations) is P(pj
x1,0) = P(pj

x1,1) = 0.5 and for n ≥ i ≥ 2,

we have:

P(pj
xi,0
|¬(p f

xi−1,I ∧ pt
xi−1,I))

= P(pj
xi,1
|¬(p f

xi−1,I ∧ pt
xi−1,I)) = 0.5

The cost of psuccess given the costs of the pj
xi is defined as follows. If for any

1 ≤ i ≤ n we have p f
xi,I
∧ pt

xi,I
, then C(psuccess) = c f with probability 1. In all other

cases we have exactly one of C(pt
xi
) < c f or C(p f

xi) < c f for all i. Thus, the costs of all

the pj
xi encode a unique assignment A to all the Boolean variables. Let C(psuccess) = 0

if assignment A satisfies Φ, and C(psuccess) = c f otherwise. So the optimal policy is to

choose pdefault (for a cost of 1) just when α is false. That is because in this case there

is a probability of at least 2−n of getting a non-satisfying assignment, thus a cost of at

least
c f
2 , and an expected cost ≥ 2n+2

2n+1 = 2 if the default is not selected. However, if α

is true, there exists a policy that always satisfies Φ, and thus the optimal scheduling

policy begins with p f
x0 or pt

x0
(and concludes with psuccess), delivering a cost of 0 with

probability 1.

If the last possible deadline is polynomial in the problem description size, then

finding the optimal first action is in PSPACE, since this is a ‘game against nature’
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of polynomial length. Thus, under this restriction, the DACE2 problem is PSPACE-

complete. Note that since the DACE2 problem is PSPACE-hard, it follows immedi-

ately that ACE2is also PSPACE-hard, as the discrete problem is a special case of the

more general model of ACE2.

Although of theoretical significance, membership in PSPACE is no help for practi-

cal solution of this scheduling problem, especially as it was conceived as a metarea-

soning problem, which must be solved in negligible computation time. Henceforth,

we make the metareasoning assumption that all the random variables are jointly in-

dependent.

4.2 The Case of Known Costs

The special case of DACE2 where all plan costs are 0 and the cost of failure is 1 is

equivalent to the discrete AE2 model of Shperberg et al. 2019 (denoted by SAE2).

Further simplifying the SAE2 model to known deadlines, the problem was shown to

be NP-hard, even though the optimal schedule is a linear sequence. However, with

different costs the optimal schedule is not even necessarily linear.

Theorem D.2

Optimal solutions for DACE2 must sometimes consist of a contingent schedule (that

depends on previous results delivered by processes), even for the restricted case of

known deadlines and known costs.

Proof. Let c f = 100 and consider processes {1, 2, 3}, with C1 = 0, C2 = 10, C3 = 15,

all with the same deadline di = 2. Let the completion-time distributions be: m1 =

[0.1 : 1, 0.9 : 10], m2 = [0.5 : 1, 0.5 : 10], m3 = [1 : 1]. That is, all processes have

some probability of completing computation in one time unit, and otherwise do not

complete within the deadline, with process 3 surely completing and delivering a plan

costing 15. Thus, by construction, any optimal policy will run a process for at most

one time unit, and only 2 processes can be scheduled to run before the (common)

deadline.

The optimal policy P∗ here is to run process 2 first (action a2). If process 2 com-

pletes (thus delivering a cost 10 plan), then run process 1 (action a1), resulting in

an expected cost of (10 · 0.9 + 0 · 0.1 = 9) in this branch, because if process 1 com-

pletes we have a plan with cost 0 (do action g1), otherwise we have a plan with
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cost 10 (do action g2). If process 2 does not complete, the best option is a3 to get

a plan with cost 15 (and then do g3 to execute it). Expected cost of this policy is

thus E[C(P∗)] = 0.5 · 9 + 0.5 · 15 = 12. Note that this is a strictly conditional (i.e.

non-linear), policy.

To see that P∗ is strictly better than any other policy, consider starting with a3,

which delivers a plan with cost 15. Now doing a1, we get a 0.1 probability of im-

proving this to 0, so the expected cost is 13.5, while doing a2 at this point we get a

probability of 0.5 of improving the cost to 10, and thus a cost 12.5 in expectation, in

both cases worse than P∗. Alternately, starting with a1, if process 1 completes we get

cost 0, but otherwise the best we can do is a3 to get a plan with cost 15. This is also

suboptimal (expected cost of this policy is 13.5).

4.3 Simple Special Case: One Running Process

Looking for tractable cases, we consider the case where we are allowed to allocate

time to only one incomplete process, denoted by i. However, we also posit m − 1

completed plans with known costs cj and known deadlines dj for 1 ≤ j ≤ m − 1.

These plans are results from processes that have completed computation in the past,

if any. For convenience, we add an additional completed dummy plan m with cm = c f

and dm = ∞, denoting the failure case. Without loss of generality, let 0 = d1 < d2 <

... < dm = ∞ and also c1 < c2 < ... < cm = c f , as a plan cj that has a cost greater than

or equal to cj+1 is dominated and can be removed. We can find an optimal stopping

policy for the incomplete process i by considering all possible stopping points d1, ...dm.

Theorem D.3

If only one specific incomplete process can be scheduled, the optimal schedule (con-

sisting of the optimal stopping time) can be computed in polynomial time.

Proof. Let policy πi,k(td) be to do no computation for delay time td (needed later on),

then run process i until time dk (if dk > td). Finally, execute the cheapest timely plan

available when i completes or "times out". Computing the expected cost of πi,1(td),

denoted by Eπi,1(td), is easy because d1 = 0, so no computation time is allowed for

process i. The best timely plan at time td has cost cl for the first l for which dl ≥ td,

and thus Eπi,1(td) = cl. In particular, Eπi,1(0) = c1.
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The value of πi,2(td) is more complex. Let us denote by si(t, td) the probability

that process i, starting at time td and running with no interruption, will complete

its computation in at most t additional time units, and succeed in finding a timely

solution. Likewise, denote by fi(t, td) the probability that process i will complete

computing under the same conditions, and fail to find a solution (or find a solution,

but discover that the deadline has passed). That is, we have:

si(t, td) =
t

∑
t′=1

mi(t′)(1− Di(td + t′ − 1))

fi(t, td) =
t

∑
t′=1

mi(t′)Di(td + t′ − 1)

Note that fi(t, td) + si(t, td) = Mi(t) because at any point in time, for a completed pro-

cess, success and failure (in finding a timely solution) are mutually exclusive events.

If we decide to stop computing at d2, we get cost c2 unless something better came

up earlier. That is, we get cost c2 either if process i is incomplete, or if it is complete

but failed; however, if process i finds a timely solution, we get the better among the

solution cost returned by process i and c2. Thus:

Eπi,2(td) = (1−Mi(d′2)) · c2 + ( fi(d′2, td)− fi(d′1, td))

· c2 + (si(d′2, td)− si(d′1, td)) · E[min(Ci, c2)]

where d′j = dj − td. Note that we may actually get a result with expected cost less

than c1 even if E[Ci] > c1.

Generalizing to compute the expected cost of πk(td): with probability 1−Mi(t−

td) process i does not complete before t, so we pick plan k with cost ck. The probability

that the computation stops with failure between dj−1 and dj is: fi(d′j, td)− fi(d′j−1, td),

in which case we pick plan j with cost cj. With probability si(d′j, td)− si(d′j−1, td) the

computation generates a timely plan after dj−1 but before dj, resulting in expected

cost E[min(Ci, cj)]. All in all, we get expected cost:

Eπi,k(td) = (1−Mi(d′k)) · ck+

k

∑
j=2

(( fi(d′j, td)− fi(d′j−1, td)) · cj+

(si(d′j, td)− si(d′j−1, td)) · E[min(Ci, cj)])
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Thus in the case of one incomplete process to be scheduled, one can simply compute

the values of all the Eπi,k(0), and select the optimal stopping point.

Unfortunately, this result cannot be easily extended to schedule more than one

incomplete process. One can still solve the MDP in time that is ‘only’ exponential

in the number of incomplete processes that may be scheduled. Obviously this is

not reasonable for a large number of such processes, and certainly not for the case

where processes actually stand for search nodes and must be scheduled in negligible

time. Instead, we use the above ideas to generate a greedy rule that performs well in

practice.

5 A Greedy Scheme With Costs

When considering only one incomplete process i for scheduling, there was no benefit

in allocating runtime other than dk (for some k), as we are not allowed to use time

not allocated to process i towards other processes. However, when multiple processes

may be scheduled, it is desirable to use as little time as necessary for the current

process, as any remaining time can be used by other incomplete processes. Therefore,

we generalize the notion of the value of a stopping policy πk to stopping at dk subject

to the constraint that at most t time is allocated to the current process (after a delay of

td). The expected value of the constrained policy, denoted by πk(t, td), is given by:

Eπi,k(t, td) = (1−Mi(min(t, d′k))) · ck+

k

∑
j=2

(( fi(min(t, d′j), td)− fi(min(t, d′j−1), td)) · cj+

(si(min(t, d′j), td)− si(min(t, d′j−1), td))·

E[min(Ci, cj)])

Although Eπi,k(t, td) is monotonically decreasing in t, there is some t at which the

expected returns (minus expected costs) per time unit is maximized, and this type

of quantity is the useful basis of numerous greedy algorithms. Using this idea, we

define the most-effective reward gain (i.e. cost reduction) rate for process i, relative to the

current best valid plan cost cc as:

ecri(td) = max
t,k

cc − Eπi,k(t, td)

t
(D.2)
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with cc = c f if there is no currently valid plan. This definition resembles the idea

behind the returns rate at the ‘most effective computation time’ (ei) of Shperberg et

al. 2019, but now in terms of expected cost, rather than logarithm of probability of

failure.

It is common to use the value ecri(0) (highest rate of returns for process i) to select

the process i that has the highest returns rate among all processes. However, some

processes are more time-critical than others, and this can be measured by how much

the returns rate drops due to delaying the start of the processing for process i by td.

The returns rate for a delayed process i is given by ecri(td). Processes for which this

decrease in returns rate ecri(0)− ecri(td) is high should get priority. Trading off high

returns rate with loss in returns rate due to delay, we get the following criterion:

Qi(td) = ecri(0)− γecri(td) (D.3)

Note that γ is an empirically determined constant that can be used to balance between

immediate reward (reward from allocating time to process i now) and future loss (due

to delaying time allocation to process i by td). The value γ = 0.5 gives these factors

equal weight, so one might expect a value not far from that to provide a good balance.

We defined a greedy scheme called Delay-Aware Greedy (DAG) based on Equation

D.3. This scheme allocates time to a process i that maximizes Qi(td), we used td = 1

in the experiments. If for each i, the optimal individual policy for process i is to stop

processing, then the algorithm terminates and executes the first valid plan.

Each iteration of DAG requires computing the ecri values of each process. There-

fore, a naïve implementation would compute Eπi,k(t, td) for every completed plan, for

every process, and for every 1 ≤ t ≤ dmaxi . Computing each Eπi,k(t, td) takes time

O(m · dmaxi). Thus, a single iteration of DAG requires O(n · m2 · d2
max) time, where

dmax = max1≤i≤n dmaxi . Since there are at most dmax iterations, and m is bounded by

the number of processes, the execution of DAG takes O(n3 · d3
max). However, DAG can

be optimized. First, the values of si, fi, Eπi,k and ecri can be pre-computed for every

1 ≤ t, td ≤ dmax in O(d2
max) time, and can be used across all iterations. Afterwards,

each iteration would only take O(n) time in order to obtain the process with the high-

est Qi value. Hence, the overall runtime of DAG can be bounded by O(n · d2
max).

Finally, if the Mi and Di distributions are given implicitly, the computations of ecri,
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Dist # pr
MDP MPP RR Random P-Greedy DAG(1/2) DAG(1)

C T C T C T C T C T C T C T

B

2 23.43 90,860 69.22 0 80.46 0 108.74 0 30.93 0 26.13 0 25.88 0

5 19.23 7.9 × 107 40.78 0 63.73 0 75.78 0 29.07 0 26.61 0 20.91 0

10 31.46 0 50.98 0 65.18 0 19.94 0 20.93 0 16.39 0

100 26.15 0 37.89 0 43.57 0 14.81 10 12.21 80 12.07 80

N

2 41.16 107,730 104.82 0 166.98 0 205.69 0 68.17 0 63.67 0 53.19 0

5 40.97 1.2 × 108 99.72 0 135 0 171.95 0 72.38 0 59.92 0 47.37 0

10 81.1 0 130.63 0 151.47 0 62.87 0 38.47 0 40.89 0

100 74.6 0 119.93 0 153.97 0 45.18 10 41.98 80 38.61 70

U

2 30.54 112,030 86.72 0 111.61 0 147.85 0 55.53 0 40.11 0 39.52 0

5 35.18 1.3 × 108 84.21 0 120.48 0 152.39 0 50.93 0 37.55 0 38.26 0

10 79.9 0 104.67 0 138.63 0 47.42 0 36.89 0 35.19 0

100 68.19 0 93.04 0 121.39 0 44.14 10 33.65 90 30.74 80

P

2 193.55 328,960 456.32 0 628.26 0 750.53 0 299.39 0 210.44 0 200.01 0

5 386.35 0 545.11 0 690.26 0 275.42 0 192.47 0 181.49 0

10 369.35 0 462.62 0 606.33 0 228.59 10 169.87 80 160.78 80

100 254.43 10 380.15 0 475.6 0 171.45 50 127.01 460 126.22 420

Average 144.58 0 201.97 0 253.71 0 94.76 10 71.12 50 66.72 50

Table D.1: Solution cost and metareasoning runtime (ms) of the algorithms on different types of

benchmark problems.

si and fi do not need to consider every 1 ≤ t ≤ dmax, but rather specific points of

interest. For example, if the distributions are piecewise linear, one may only need to

examine transition points between segments and some other segment intersections.

6 Empirical Results

We tested the new DAG method on DACE2 problems whose performance profiles,

cost distributions, and deadline distributions had a variety of forms. Following Shper-

berg et al. 2019, we used: Uniform (U), with minimal range value a = 1 and maximal

range value b uniformly drawn from {[5, 10], [50, 100], [100, 200], [150, 300]}, we denote

the set of possible [a, b] ranges by R; Boltzmann (B), truncated exponential distribu-

tion with the diminishing return property, using a λ ∈ {0.1, 1, 2} and range drawn

from R; Truncated Normal Distribution (N) with µ ∈ {5, 50, 100, 150}, σ ∈ {1, 5, 10},

and range drawn from R; and Planner (P), which are distributions collected from

search trees of the OPTIC planner when run on problems from the Robocup Logistics

League (Niemueller et al. 2015) domain. To acquire the planner distributions, A* was

executed from each node of a dumped search tree. The result of each of these searches

provides the number N(v) of expansions necessary to find the goal under a node v.
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These numbers were binned separately for each (h(v), g(v)) pair. Then, a set V was

formed by selecting nodes randomly from the tree, each one standing for a process.

For each such v ∈ V, the list of numbers of expansion in the bin corresponding to g(v)

and h(v) was treated as a distribution over completion times (in terms of number of

expansions). Likewise for creating the latest start times for the resulting plan (the

deadline distribution). When using our method as part of a planner, one would need

to create such statistics on-the-fly.

We used the following scheduling algorithms as baselines for the evaluation: (i) MDP:

solution computed using the Bellman equation (whenever computationally feasible).

(ii) P-Greedy: the greedy log-probability of failure minimization scheme of Shper-

berg et al. 2019. (iii) Random: allocate time to a random process that has not already

failed. (iv) Most promising process (MPP): allocate time to the process with the

highest probability to find a timely solution. In case of failure, the algorithm chooses

the next most promising process. (v) Round-robin (RR): allocate time units to each

non-failed process in equal portions and in circular order. In addition to a scheduling

scheme, we must specify a stopping scheme used by the candidate algorithms. The

last three algorithms choose the best (least-cost) timely completed plan i available

at any given time, but continue scheduling processes until the (now known) dead-

line for i arrives, in case a better plan is found. Once the deadline for i arrives, this

plan is executed. We compared all the above algorithms to the DAG method using

γ ∈ {0, 0.2, 0.5, 0.75, 1, 2, 10, 100}. However, the reported results include only 0.5 and

1, which were the best parameter values.

Evaluating the quality of a solution (policy) is not a trivial task, especially for

adaptive policies that depend on the state to make a decision. In order to tackle

this issue, we ran the algorithms on each setting for 500 attempts and reported the

average cost over all runs. Since this policy evaluation process introduced noise, we

have measured the standard deviation (std) of the solution quality (not reported in the

table); the overall std was small (±3.27), therefore, the introduced noise does not affect

the trends reported below. The results are shown in Table E.1. The C column indicates

the average cost achieved by the policy created by the algorithms and the T column is

the metareasoning runtime in milliseconds. The last rows gives average solution cost

and geometric mean of the runtimes. Generally, the DAG scheme achieved the lowest
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costs among all algorithms (except for the MDP, which is optimal), and demonstrates

a significant advantage over the naive schemes in terms of solution cost; γ = 1 seems

to be the best balance between loss due to delay and reward slope. Although DAG

was the slowest among all non-MDP algorithms, it is still several orders of magnitude

faster than the MDP and required less than 1 second in all cases.

7 Conclusion

Situated temporal planning can benefit from metareasoning about the unknown dead-

lines and search process runtimes. An abstract deliberation scheduling scheme mod-

eling such search processes, aimed at maximizing the probability of finding a timely

solution, was developed by Shperberg et al. 2019, but it did not model the cost of the

computed solution. This paper extends the latter scheme to handle plan costs.

An MDP model of the extended deliberation scheduling problem was defined and

its complexity was analyzed. We showed that the incorporation of costs significantly

complicates the metareasoning problem in several ways. First, even when everything

except algorithm runtimes is known (deadlines, costs), the optimal schedule requires

contingent policies, rather than just a linear schedule as in the case without costs.

Second, the introduction of costs now necessitates a stopping policy, trading off exe-

cution of an already computed solution vs. attempting to find better solutions, at the

risk of making the current solution(s) expire. Finally, with costs (and dependencies)

we proved that finding even the first action in an optimal schedule is PSPACE-hard.

As the MDP has exponential size and is provably intractable, we examined special

cases and approximations. We gave a polynomial-time optimal solution for a simple

case in which there is only one running process (and a set of completed processes).

We present a greedy algorithm (DAG) based on intuitions from this simple case, as

well as the greedy algorithm described by Shperberg et al. 2019 (P-Greedy). Finally,

we compared the new algorithm empirically against P-Greedy and other base-line al-

gorithms; the results of DAG outperform the other methods. For very small instances,

where the MDP solution was possible, the DAG scheme was near-optimal.

As more and more agents make plans that interact with the external world in all

its temporal complexity, this work will help provide a foundation allowing situated
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planning to see use in applications where costs play a significant role.
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Abstract

We address the problem of situated temporal planning, in which an agent’s plan can depend on

scheduled exogenous events, and thus it becomes important to take the passage of time into ac-

count during the planning process. Previous work on situated temporal planning has proposed

simple pruning strategies, as well as complex schemes for a simplified version of the associated

metareasoning problem. Although even the simplified version of the metareasoning problem

is NP-hard, we provide a pseudo-polynomial time optimal solution to the case with known

deadlines. We leverage intuitions emerging from this case to provide a fast greedy scheme that

significantly improves upon previous schemes even for the case of unknown deadlines. Finally,

we show how this new method can be applied inside a practical situated temporal planner.

An empirical evaluation suggests that the new planner provides state-of-the-art results on

problems where external deadlines play a significant role.

1 Introduction

This paper addresses the problem of situated temporal planning, where an agent

plans online in the presence of external temporal constraints such as deadlines. For

example, if a promising partial plan involves taking a particular train, then it might

be worth ensuring that the planning process finishes soon enough that the agent can

get to the station in time. In other words, a plan must be found quickly enough that

it is possible to execute that plan after planning completes. In this setting, search

decisions and temporal constraints interact in complex ways, as choosing to include

some action in a plan can introduce a temporal constraint for the subtree of the search

tree that includes that action; time spent searching within other subtrees affects the

applicability of that action. This differs from other time-aware planning settings, such

as real-time heuristic search (Korf 1990), in that each open search node might have a

different deadline.

The first planner to address situated temporal planning (Cashmore et al. 2018) uses

temporal reasoning (Dechter et al. 1991) to prune search nodes for which it is provably

too late to start execution. It also uses estimates of remaining search time (Dionne et

al. 2011) together with information from a temporal relaxed planning graph (A. J.
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Coles et al. 2010) to estimate whether a search node is likely to be timely, i.e. likely to

lead to a solution that will be executable when planning finishes. As these estimates

are not admissible, it uses dual open lists: one only for timely nodes, and another for

all nodes (including nodes for which it is likely too late to start execution). However,

the planner still uses standard heuristic search (Weighted A∗) with these open lists,

while noting that this is the wrong thing to do; leaving for future work finding the

right search strategy.

Inspired by the situated planning setting, Shperberg, A. Coles, et al. 2019 pro-

posed a rational metareasoning (Russell and Wefald 1991) approach for a simplified

version of the search problem faced by a situated planner. The problem was simpli-

fied in several ways: first, only an abstract version of the metareasoning problem was

addressed, and second, distributions over the remaining search time and deadlines

were assumed known. The metareasoning problem was formulated as an MDP with

the objective of maximizing the probability of finding a timely plan. This was proved

to be NP-hard, even when the deadlines are known. However, the reduction was from

the Knapsack problem, suggesting the possibility of a pseudo-polynomial time opti-

mal solution algorithm. Shperberg, A. Coles, et al. 2019 also suggested a greedy, and

somewhat ad-hoc, decision rule (denoted hereafter as basic greedy), which worked

well in an empirical evaluation with various types of distributions.

In this paper, we first show that indeed the known deadline case can be solved in

pseudo-polynomial time through dynamic programming (DP). Despite being optimal

when deadlines are known, the DP approach does not perform well with unknown

deadlines. Our second contribution is an alternate greedy decision rule, called DDA,

that is better justified theoretically than basic greedy; we show empirically that DDA

delivers better results than the basic greedy scheme in the same abstract setting of the

problem.

Finally, our third contribution is to integrate the new metareasoning scheme as the

search strategy for the situated temporal planner of Cashmore et al. 2018. An empiri-

cal evaluation shows that the new approach leads to timely solutions for significantly

more problems than using standard heuristic search, even with pruning late nodes

and dual open lists. This is an important step in bringing situated temporal planning

closer to practical utility.
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2 Background

We start by reviewing formal models of situated temporal planning and the associated

metareasoning problem. Although heuristic search with external temporal constraints

can arise in many settings, we focus in this paper on the problem of situated domain-

independent temporal planning.

2.1 Problem Statement

Following Cashmore et al. 2018, we formulate situated temporal planning as propo-

sitional temporal planning with Timed Initial Literals (TIL) (Cresswell and Codding-

ton 2003; Edelkamp and Hoffmann 2004). Such problems are specified by a tuple

Π = 〈F, A, I, T, G〉, where:

• F, a set of Bool. propositions describing the world state.

• A is a set of durative actions; each action a ∈ A has:

– Duration in the range [durmin(a), durmax(a)]

– Start condition cond`(a), invariant condition cond↔(a), and end condition

conda(a), all of which are subsets of F, and

– Start effect eff `(a) and end effect eff a(a), both of which specify which

propositions in F become true or false when a starts or ends, respectively.

• I ⊆ F is the initial state, and G ⊆ F specifies the goal.

• T is a set of timed initial literals (TIL). Each TIL l = 〈time(l), lit(l)〉 ∈ T consists

of a time time(l) and a literal lit(l) ∈ F, specifying a proposition that becomes

true (or false) at time(l).

A solution to a situated temporal planning problem is a schedule σ: a sequence

of triples 〈a, ta, da〉, where a ∈ A is an action, ta ∈ R0+ is the time when action a is

started, and da ∈ [durmin(a), durmax(a)] is the duration chosen for a. To define a valid

schedule, we view it as a set of instantaneous happenings (Fox and Long 2003) that

occur when an action starts, when an action ends, and when a timed initial literal is

triggered. For each triple 〈a, t, d〉 in σ, we have action a starting at time t (requiring
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cond`(a) to hold a small amount of time ε before t, and applying the effects eff `(a)

right at t), and ending at t+ d (requiring conda(a) to hold ε before t+ d, and applying

the effects eff a(a) at t + d). For TIL l we have the effect specified by lit(l) triggered

at time(l). We require the invariant condition cond↔(a) to hold over the open interval

between t and t + d, and the goal G to hold after all happenings have occurred.

The difference from standard temporal planning is that here we interpret the TILs

as encoding temporal constraints in absolute time since planning started. Thus, we

require the schedule σ to start only after planning is completed. That is, if the planner

started at time 0 and took tp time for its planning, we require that ta ≥ tp for all

〈a, ta, da〉 ∈ σ.

2.2 Metareasoning in Situated Planning

The requirement ta ≥ tp implies that the plan must be fully generated before the

minimum ta, which may be unknown until planning completes. For a partial plan

available at a search node i in the planner, this can be modeled by a random variable

di, denoting the unknown deadline by which a potential plan expanded from node i

must be generated. Thus, the planner faces the metareasoning problem of deciding

which nodes on the open list to expand in order to maximize the chance of finding a

plan before its deadline.

Shperberg, A. Coles, et al. 2019 propose a model of this problem called (AE)2 (‘al-

locating effort when actions expire’) which abstracts away from the planning problem

and merely assumes n independent processes. Each process attempts to solve the

same problem under time constraints. In the context of situated temporal planning

using heuristic search (which we explore further below), each process may represent

a promising partial plan for the goal, implemented as a node on the open list eager

to have its subtree explored. But the abstract problem may also be applicable to other

settings, such as algorithm portfolios or scheduling candidates for job interviews. For

simplicity, we assume a single processor, so the core of the metareasoning problem is

to determine how to schedule the n processes on the single processor.

When process i terminates, it delivers a solution with probability Pi or, otherwise,

indicates its failure to find one. For each process, there is a deadline defined in

absolute wall clock time by which its computation must be completed in order for
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any solution it finds to be valid. The deadline may be uncertain and is provided as a

probability distribution. For process i, let Di(t) be the CDF over wall clock times of

the random variable denoting the deadline. The actual deadline for a process is only

discovered with certainty when the process completes. This models the fact that a

dependence on an external timed event might not become clear until the final action

in a plan is added. If a process terminates with a solution before its deadline, we say

that it is timely. Given Di(t), we assume w.l.o.g. that Pi is 1, otherwise one can adjust

Di(t) to make the probability of a deadline that is in the past (thus forcing the plan to

fail) equal to 1− Pi.

The processes have known search time distributions, (performance profiles (Zil-

berstein and Russell 1996)) described by CDFs Mi(t), the probability that process i

needs total computation time t or less to terminate. Although some of the algorithms

we present can handle dependencies, we make the typical metareasoning assumption

in our analysis that all random variables are independent. Given the Di(t) and Mi(t)

distributions, the objective of (AE)2 is to schedule processing time between the n pro-

cesses maximizing the probability of at least one process finding a timely solution.

A simplified discrete-time version of the problem, called S(AE)2, can be cast as a

Markov decision process. The MDP’s actions are to assign (schedule) the next time

unit to process i, denoted by ai with i ∈ [1, n]. Action ai is allowed only if process i

has not already failed. A process is considered to have failed if it has terminated and

discovered that its deadline has already passed, or if the current time is later than the

last possible deadline for the process.

The state variables are the wall clock time T and one state variable Ti for each

process, with domain N ∪ {F}, although in practice the time domains of T, Ti are

bounded by the latest possible deadlines. Ti denotes the cumulative time assigned to

each process i until the current state, or that the process failed (indicated by F). We

also have special terminal states SUCCESS and FAIL. Thus the state space is:

S = (dom(T)× ×
1≤i≤n

dom(Ti)) ∪ {SUCCESS, FAIL}

The initial state has T = 0, and Ti = 0 for all 1 ≤ i ≤ n. The transition distribu-

tion is determined by which process i has last been scheduled (the action ai), the Mi

distribution (which determines whether currently scheduled process i has completed

its computation), and Di (which determines the revealed deadline for a completed
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process, and thus whether it has succeeded or failed). If all processes fail, transition

into FAIL (with probability 1). If some process is successful, transition into SUCCESS.

The reward is 0 for all states except SUCCESS, for which the reward is 1.

The size of the state-space of the S(AE)2 MDP is exponential in the number of

processes, so it is impractical to fully specify the MDP explicitly or to solve it directly.

Furthermore, the S(AE)2 problem is NP-hard, even for known deadlines (denoted

KDS(AE)2) (Shperberg, A. Coles, et al. 2019).

2.3 Basic Greedy Scheme

As S(AE)2 is NP-hard, Shperberg, A. Coles, et al. 2019 used insights from a dimin-

ishing returns result to develop a greedy scheme. They restrict their attention to

linear contiguous allocation policies: schedules where the action taken at time t does

not depend on the results of the previous actions, and where each process receives

its allocated time contiguously. Using the p.m.f. mi(t′) = Mi(t′) − Mi(t′ − 1), the

probability that process i finds a timely plan when allocated ti consecutive time units

beginning at time tbi is:

si(ti, tbi) =
ti

∑
t′=0

mi(t′)(1− Di(t′ + tbi)) (E.1)

Example E.1

Let m1 ∼ [0.5 : 2; 0.5 : 5], i.e. process 1 requires 2 time units or 5, equally likely;

and d1 = 2 with probability 1 (known deadline). Then s1(2, 0) = 0.5, and s1(2, 1) =

s1(1, 0) = 0. Thus, process 1 delivers a timely solution with probability 0.5 given 2

time units at tb1 = 0; and is useless with t1 < 2 or tb1 ≥ 1.

When considering linear contiguous policies, we need to allocate ti, tbi pairs to all

processes (with no allocation overlap). Note that overall a timely plan is found if at

least one process succeeds, that is, overall failure occurs only if all processes fail. Thus,

to maximize the probability of overall success Ps (over all possible linear contiguous

allocations), we need to allocate ti, tbi pairs so as to maximize:

Ps = 1−∏
i
(1− si(ti, tbi)) (E.2)
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Using LPFi(·) (‘logarithm of probability of failure’) as shorthand for log(1 − si(·)),

we note that Ps is maximized if the sum of the LPFi(ti, tbi) is minimized and that

−LPFi(ti, tbi) behaves like a utility that we need to maximize. For known deadlines,

we can assume that no policy will allocate processing time after the respective dead-

line. We will use LPFi(t) as shorthand for LPFi(t, 0).

To bypass the problem of non-diminishing returns, the notion of most effective

computation time for process i under the assumption that it begins at time tb and runs

for t time units was defined as:

ei(tb) = argmin
t

LPFi(t, tb)

t
(E.3)

ei(tb) is a generalization of ei from Shperberg, A. Coles, et al. 2019 which equals ei(0)

here. We use ei to denote ei(0) below.

Example E.2

For process 1 from Example E.1 we have (log base 2): LPF1(t1, tb1) = −1 for all

t1 ≥ 2 and tb1 = 0, and LPF1(t1, tb1) = 0 for all other t1 and tb1 configurations; so

e1(0) = 2.

Since not all processes can start now, intuitions from diminishing returns are: to

prefer process i that has the best utility per time unit, i.e. such that −LPFi(ei))/ei is

greatest. Still, allocating time now to process i delays other processes, so it is also

important to allocate the time now to processes with an early deadline. Shperberg, A.

Coles, et al. 2019 thus suggested the following greedy algorithm: Iteratively allocate

tu units of computation time to process i maximizing:

Q(i) =
α

E[Di]
− LPFi(ei)

ei
(E.4)

where α and tu are positive-valued parameters, and E[Di] is the expectation of the ran-

dom variable with CDF Di (a slight abuse of notation). α trades off between preferring

earlier deadlines (large α) and better performance slopes (small α).
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Example E.3

Add to Example E.2 process 2 with d2 = 4 and m2 ∼ [0.75 : 2; 0.25 : 20]. Note that

process 1 cannot be delayed as d1 = 2, but process 2 can be delayed by 2 time units.

Thus, the optimal policy (which results in Ps = 7/8) is to start with process 1 and

then move to process 2. However, LPF2(2, tb2) = −2 and e2(tb2) = 2 for tb2 ≤ 2,

with − LPF2(e2)
e2

= 1, better than − LPF1(e1)
e1

= 0.5. Nonetheless, with α = 10, we have

initially Q(1) = 10/3 + 0.5 = 23/6 and Q(2) = 10/4 + 1 = 21/6, so start with process 1,

as required.

3 New Metareasoning Schemes

Our new results for the S(AE)2 are a (pseudo) polynomial-time algorithm for the case

of known deadlines (dropping the diminishing returns requirement), and a better

justified greedy scheme that also works better in practice.

3.1 DP Solution for Known Deadlines

Although S(AE)2 is NP-hard, Shperberg, A. Coles, et al. 2019 showed that under the

additional restriction of diminishing returns (non-decreasing logarithm of probability

of failure) an optimal schedule can be found in (pseudo) polynomial time. However,

planning processes do not have diminishing returns. We therefore examine delibera-

tion scheduling when the diminishing returns assumption is removed.

For KDS(AE)2 (known deadlines S(AE)2), it is sufficient to examine linear contigu-

ous allocation policies (Shperberg, A. Coles, et al. 2019). We extend this result by

showing that restricting the schedules to ones with processes sorted by an increasing

order of deadlines is still optimal:

Theorem E.1

Given a KDS(AE)2 problem, there exists a linear contiguous schedule with processes

sorted by a non-decreasing order of deadlines that is optimal.

Proof. Given an optimal linear contiguous policy P, we show that it can be rearranged

to have non-decreasing order of deadlines. Let consecutive processes i, i + 1 in P be
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the first two processes with deadlines di+1 < di. Let P’ be the same as P but with

the starting times of i and i + 1 exchanged. Since P′ differs from P only in the order

of i and i + 1, all processes allocated either before i or after i + 1 are unaffected, as

they maintain the same starting time and duration allocations. In addition, since the

time allocation for both processes is unchanged, the only way to decrease the solution

quality is by violating the deadline of either i or i + 1. Making process i + 1 start

earlier cannot cause it to violate its deadline. Furthermore, di > di+1 and di+1 was not

violated in P, therefore, di also cannot be violated in P′. Thus, the success probability

for P′ is not less than that of P. These steps can be repeated until an optimal schedule

sorted by a non-decreasing order of deadlines is obtained.

Theorem E.1 can be used to obtain a DP scheme.
Theorem E.2

For known deadlines, an optimal schedule can be found in time polynomial in n, dn

using DP according to

OPT(t, l) = max
0≤j≤dl−t

(OPT(t+ j, l+1)−LPFl(j)) (E.5)

Proof outline. We show by induction that OPT(t, l) is the utility of the optimal linear

contiguous ordered (LCO) schedule for processes l through n for the ‘remaining’

time dn − t. The base cases are when l = n + 1 (no processes to be assigned), thus

OPT(·, n+ 1) = 0; or no time remaining, thus OPT(dn, ·) = 0. Assume that OPT(t′, l′)

is the utility of the optimal LCO schedule for every t′ ≥ t and l′ > l. To compute the

utility of the optimal LCO schedule for processes l through n for the "remaining" time

dn− t, we need to consider all time allocations j for process l. For each time allocation

j, we add the reward resulting from the allocation, which is −LPFl(j), to the best

utility over every possible optimal schedule of processes l + 1 through n, given that

j time was already allocated. The latter is exactly OPT(t + j, l + 1) according to the

inductive hypothesis. Note that any allocation beyond the deadline of process l (dl)

is wasteful and cannot contribute to the utility. Thus, we can only consider time

allocations j between 0 and dl–t. This computation is exactly the right-hand side of

Equation E.5.

Thus, OPT(0, 1) is the maximal utility among all LCO schedules for processes

from 1 to n starting at t = 0. Due to Theorem E.1, OPT(0, 1) is the maximal utility

among all schedules, indicating an optimal solution to KDS(AE)2. �
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If the representation of the Mi is explicit, the algorithm evaluating Equation E.5 in

descending order runs in polynomial time. Otherwise, it is pseudo-polynomial and

can be approximated in polynomial time.

3.2 Delay-Damage Aware Greedy Scheme

Although the pseudo-polynomial algorithm for KDS(AE)2 is reasonably fast, it is still

too slow for metareasoning in a planner. Furthermore, it is not applicable when

deadlines are unknown. Thus, we next examine a new greedy scheme, beginning

with pointing out shortcomings of the greedy scheme from Shperberg, A. Coles, et al.

2019; namely, using the proxy E[Di] in the value Q(i) is somewhat ad-hoc and fails

when the deadline distribution has a large variance.

Example E.4

Modify Example E.3 so that process 2 deadline d2 ∼ [0.75 : 2; 0.25 : 10], thus E[D2] =

4 as before. Then Q(1), Q(2) are unaffected and basic greedy behaves the same.

However, now both process 1 and process 2 cannot be delayed. Therefore, the

optimal policy now is to schedule only process 2 for Ps = 9/16.

A more principled scheme can use the utility per time unit as in Q(i), but with

a first term that is better justified theoretically. The first term of Q(i) is used for

prioritizing processes with early deadlines, as any delay might prevent them from

completing their computation before their deadline, even if they would have been

timely had they been scheduled for processing immediately. Therefore, instead of the

first term, it makes sense to provide a measure of the ‘utility damage’ to a process i

due to delaying its processing start time from time 0 to time td. Consider the case of

two processes and allocating contiguous processing time to each of them, each equal

to their most effective computation time ei. For simplicity assume e1 = e2 = e1,2. In

this case, we can write down the ‘utility’ (negative logarithm of probability of failure)

for first running process 1 and then process 2, as:

U(1, 2) = −LPF1(e1,2, 0)− LPF2(e1,2, e1,2)
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where the second term is for LPF for process 2 delayed to the end of the run of process

1. Likewise, for process 2 first:

U(2, 1) = −LPF2(e1,2, 0)− LPF1(e1,2, e1,2)

Since e1 = e2 = e1,2, we can re-normalize the utility terms by adding LPF2(e1,2, e1,2) +

LPF1(e1,2, e1,2) to get:

U′(1, 2) = −LPF1(e1,2, 0) + LPF1(e1,2, e1,2) (E.6)

U′(2, 1) = −LPF2(e1,2, 0) + LPF2(e1,2, e1,2)

U′ is the difference in utility we could get for a process when it is run at time 0, minus

the utility it can achieve if delayed by e1,2 time units, and thus we call U′ the ‘utility

loss of delaying the process by e1,2 time units’. The advantage of using U′ as a measure

of process i is that its value in equation E.6 depends only on process i. Although

this optimality argument does not necessarily extend to more than 2 processes or to

non-contiguous schedules, it has the advantage of correctly addressing the deadline

distributions.

Example E.5

In Example E.3, LPF2(2, 0)= LPF2(2, 2) =−2 and LPF1(2, 0) = −1 but LPF1(2, 2) =

0. So U′(1, 2) = 3 > U′(2, 1) and process 1 is first as needed. In Example 4,

LPF2(2, 2) = 0, LPF2(2, 0) = log(7/16), so U′(2, 1) > U′(1, 2) and process 2 is run as

required.

In practice, a greedy scheme assigns some tu < ei time units to process i at a time.

As the most effective time ei is not assigned in one chunk, it makes sense to assign

time in order of the utility slope available if we allow process i to run now, rather

than the total utility. In other words, we will use the utility slope as a proxy for the

potential gain. This was done in the second term in Equation E.4 in the basic greedy

scheme, and thus we still prefer a process i that maximizes:

slopenowi = − LPFi(ei, 0)/ei
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However, as suggested by Equation E.6, a measure of the urgency of process i

w.r.t. the deadlines is in certain cases proportional to the utility loss due to delaying

the process. The utility slope after delay of process i by tu is:

slopelateri = − LPFi(ei(tu), tu)/ei(tu)

The higher the slope after delay, the greater the gain, thus the smaller the loss, and

the lower the urgency. Thus, this term is to be minimized.

Since the time tu allocated at each round is not equal to ei; and since with more

than two processes the delay a process suffers is unknown, the tradeoff between these

terms is not necessarily equal. We use an empirically determined constant multiplier

γ to balance between exploiting the current process reward from allocating time to

process i now and the loss in reward due to delay. Thus, the delay-damage aware

(DDA) greedy scheme is to assign, at each processing allocation round, tu time to the

process i that maximizes:

Q′(i) =
γ · LPFi(ei(tu), tu)

ei(tu)
− LPFi(ei, 0)

ei
(E.7)

3.3 Evaluation on S(AE)2

We performed an empirical evaluation in order to assess the effectiveness of the dif-

ferent metareasoning schemes on the abstract problem, and to decide which scheme

to integrate into an actual planner. Following Shperberg, A. Coles, et al. 2019, we

generated problems with performance profiles and deadline distributions based on a

variety of distributions: Uniform (U), with minimal range value a = 1 and maximal

range value b uniformly drawn from {[5, 10], [50, 100], [100, 200], [150, 300]}, we denote

the set of possible [a, b] ranges by R; Boltzmann (B), truncated exponential distribu-

tion with the diminishing return property, using a λ ∈ {0.1, 1, 2} and range drawn

from R; Truncated Normal Distribution (N) with µ ∈ {5, 50, 100, 150}, σ ∈ {1, 5, 10},

and range drawn from R; and Planner (P), distributions collected from search trees of

the Robocup Logistics League (Niemueller, Lakemeyer, et al. 2015) domain generated

by the OPTIC planner. To acquire the planner distributions, A* was executed from

each node of the dumped search tree. The result of each of these searches provides the
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number N(v) of expansions necessary to find the goal under a node v. These numbers

were binned separately for each (h(v), g(v)) pair. Then, a set of nodes V was selected

randomly from the trees, each node standing for a process. For each such v ∈ V, the

list of numbers of expansions in the bin corresponding to g(v) and h(v) was treated

as a distribution over completion times (in terms of number of expansions). Likewise

for creating the latest start times for the resulting plan (the deadline distribution). Ex-

periments were run with unknown deadlines, and with a known deadline randomly

drawn from the corresponding distribution before execution.

The algorithms we evaluated are: the optimal MDP solution (whenever possi-

ble), computed using the Bellman equation in value-determination; the basic greedy

scheme using α ∈ {0, 0.2, 0.5, 1, 20}; the DDA scheme using tu = 1 and γ ∈

{0, 0.2, 0.5, 0.75, 1, 2, 10, 100}; and the dynamic programming (DP) scheme, treating

the expected deadline of each process as its true deadline when the deadlines are

unknown. The reported results are only the best parameter values: α = 0 for basic

greedy and γ = 1 for DDA.

Evaluating the quality of a solution (policy) is not trivial, especially for adaptive

policies. We ran the algorithms on each setting for 500 attempts and reported the

fraction of successful runs out of the total number of attempts as the solution quality.

Since this policy evaluation process introduced noise, we have measured the stan-

dard deviation (std) of the solution quality (not reported in the table); the overall std

was small (±0.02), therefore, the introduced noise does not affect the trends reported

below. The results are shown in Table E.1, in which the top and bottom halves of

the table contains results of the known and unknown deadlines cases respectively. Q

indicates the solution quality (success probability achieved by the policy created by

the algorithm); T is the metareasoning runtime in seconds. ‘Avg’ rows give average

solution quality and geometric mean of the runtimes. DP is optimal (and therefore

the best) when the deadlines are known; however, it performed poorly for unknown

deadlines. For the unknown deadlines case, and on average across both cases, DDA

achieved the best solution quality, outperforming the basic greedy scheme. How-

ever, DDA had the worst metareasoning runtime, except for the MDP, which we must

consider when integrating it with a planner.
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Dist # pr
MDP Basic DDA DP

Q T Q T Q T Q T

B

2 0.72 0.1 0.63 0.00 0.66 0.00 0.72 0.00

5 0.71 0.00 0.78 0.01 0.83 0.01

10 0.63 0.01 0.75 0.08 0.88 0.09

100 0.82 0.07 0.99 0.19 1.00 0.21

N

2 0.61 7.7 0.55 0.00 0.57 0.00 0.61 0.00

5 0.84 0.00 0.84 0.01 0.84 0.01

10 0.92 0.01 0.93 0.06 0.93 0.08

100 1.00 0.02 1.00 0.23 1.00 0.28

U

2 0.66 1.5 0.62 0.00 0.64 0.01 0.66 0.02

5 0.85 0.02 0.85 0.09 0.91 0.10

10 0.97 0.03 0.98 0.22 0.98 0.31

100 1.00 0.08 1.00 0.78 1.00 0.71

P

2 0.82 11.7 0.71 0.00 0.77 0.00 0.82 0.00

5 0.77 0.00 0.82 0.02 0.83 0.03

10 0.98 0.01 1.00 0.09 1.00 0.1

100 1.00 0.05 1.00 0.27 1.00 0.24

Known, Avg. 0.81 0.02 0.85 0.13 0.87 0.14

B

2 0.69 188.1 0.62 0.01 0.65 0.03 0.50 0.03

5 0.65 0.02 0.77 0.12 0.57 0.14

10 0.71 0.06 0.75 0.48 0.72 0.55

100 0.70 0.21 0.82 1.19 0.68 1.43

N

2 0.69 25.6 0.61 0.01 0.69 0.04 0.47 0.04

5 0.70 0.02 0.87 0.10 0.66 0.13

10 0.64 0.05 0.72 0.44 0.55 0.49

100 0.76 0.19 0.84 2.03 0.73 1.95

U

2 0.73 112.8 0.67 0.04 0.73 0.25 0.73 0.26

5 0.69 0.19 0.78 1.26 0.45 1.12

10 0.79 0.22 0.91 2.25 0.84 2.31

100 0.85 0.88 0.89 7.83 0.74 7.50

P

2 0.81 20.6 0.62 0.00 0.77 0.01 0.63 0.01

5 0.89 0.00 0.93 0.03 0.81 0.06

10 0.9 0.05 0.9 0.38 0.88 0.39

100 0.86 0.21 0.95 2.21 0.75 2.23

Unknown, Avg. 0.73 0.14 0.81 1.17 0.67 1.17

Total, Avg 0.77 0.08 0.83 0.65 0.77 0.65

Table E.1: Solution quality and runtime for different settings
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4 Integrating DDA into a Planner

DDA was the best performing algorithm in Section 3.3, while the basic greedy scheme

(with α = 0) had the best runtime. Since DDA with γ = 0 is equivalent to basic greedy

with α = 0, it suffices to implement DDA in the planner. In order to do so, several

issues must be addressed. First, the non-trivial task of obtaining the distributions;

second, how to use the DDA scheme as the basis for search.

4.1 Estimating the Distributions

DDA needs the Di and Mi distributions as input. To estimate these distributions,

we leverage estimates easily obtained in the situated temporal planner on which we

build (Cashmore et al. 2018). The planner uses the temporal relaxed planning graph

(TRPG) (A. J. Coles et al. 2010) to estimate E[Di], and the distance to go (also from the

TRPG) to estimate remaining search time (Dionne et al. 2011), which we treat as an

estimate of E[Mi].

However, to use the DDA greedy rule we must also estimate the whole distribu-

tion, rather than just the expected values. For Di(t), we simply use a step function

that goes from probability zero to one when t is equal to the deadline of the relaxed

plan (our estimation of E[Di]). In order to estimate Mi, we use an online temporal

difference learning technique (Thayer et al. 2011). Note that the true distance-to-go

from some state s, denoted d∗(s) is equal to d∗(bc(s)) + 1, where bc(s) is the best child

of state s, that is, the successor that is on the best path to the goal. If d is a heuristic es-

timate of d∗, then the one-step error of d at s is defined as εd(s) = d(bc(s)) + 1− d(s).

The average error of d is then estimated by the average one-step error, either through-

out the entire search space or along a specific path.

We extend these ideas to estimate Mi. First, as we have the one-step errors for all

states observed so far, we can estimate the distribution of one-step errors of distance to

go, denoted Od. Since these errors accumulate along the path to the goal, to estimate

the distribution of the distance to go from state s, we convolve Od with itself d(s)

times. We then multiply this distribution by the average expansion delay divided by

the expansion rate (Cashmore et al. 2018), which measures how much time passes, on

average, between generating a state and expanding it.

131



Paper E. Situated Temporal Planning Using Deadline-aware Metareasoning

One important implementation detail is that, when the expansion delay is small,

the remaining-search-time estimate may unrealistically have zero probability of fail-

ure. Thus we add to the Mi distribution an infinite remaining search time outcome,

with probability pf min = 0.0001.

4.2 Searching with DDA

For search, each state i on the open list can be treated as a process. Hence, the Q′(i)

value (Equation E.7) is maintained for each state i, and computation time is allocated

to a state with highest Q′(i). Recalling that the DDA scheme is based on allocating

tu units of computation time, thus we perform tu expansions in the subtree rooted at

i; after tu expansions, the non-expanded (frontier) nodes in this subtree are added to

the open list, and another state is chosen according to Q′.

One important aspect of searching based on Q′ values is that these values are not

static: during search, the distribution Od changes, and time passes, all of which change

the Q′(i) values. Hence, we recompute them every tu expansions, i.e. whenever the

next subtree to allocate time to is to be chosen. To reduce the metareasoning overhead

(for instance, to keep it under some desired proportion of planner runtime), one could

consider changing the frequency of this during search, but as we have not found the

overheads to be excessive in our experiments, we leave this for future work.

Since DDA needs statistics, such as one-step error estimates, that are unavailable

early in the search, we actually start off by using the baseline weighted A∗ search

(Cashmore et al. 2018). The DDA ordering kicks in only after nexp expansions (an

algorithm parameter).

In some domains the distribution information is unhelpful, e.g. if the deadline

is very far, in which case probability of success for many nodes is close to 1, both

before and after delay. Alternately, the deadline may be very close, in which case

the probability of success is close to 0, regardless of delay for many nodes. In such

cases, many leading Q′ values are identical, and our scheme may become erratic. In

such cases we break ties or near-ties by preferring nodes with lower f value. This

tie-breaking was implemented by actually expanding nodes with the highest Q′(i) +

β f (i), where a very small β = −0.000001 was used throughout.

One could also imagine a more sophisticated scheme in which the algorithm mon-
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itors the distribution of Q′ values to assess whether they contain useful information

or suffer from substantial estimation error. This interesting issue remains for future

work.

5 Empirical Evaluation

To evaluate the DDA metareasoning scheme, we implemented it on top of the situated

temporal planner of Cashmore et al. 2018, which itself is implemented on top of

OPTIC (Benton et al. 2012). As a baseline, we use the heuristic search scheme of

Cashmore et al. 2018. We used the same set of benchmarks as this prior work, which

includes all IPC domains with Timed Initial Literals (TILs), representing constraints

on absolute time; as well as 200 instances from the Robocup Logistics League (RCLL)

(Niemueller, Karpas, et al. 2016), a simulated robotic manufacturing setting – divided

into instances with 1 or 2 robots, and a Turtlebot office delivery domain with tight

deadlines from Cashmore et al. 2019. All experiments were run on a server with 72

Intel Xeon E5-2695 CPUs, using up to 64 processes in parallel (Tange 2011) and a 3GB

memory limit.

Domain baseline DDA DDA(nexp = 1) DDA(γ = 0) DDA(hs) DDA (dom tuned)

airport 19.0 (19–19) 20.0 (20–20) 20.0 (20–20) 20.0 (20–20) 19.1 (19–20) 20.5 (19–21)

pw-nt 4.0 (3–4) 4.0 (3–5) 4.5 (3–5) 4.0 (3–4) 4.0 (4–4) 3.9 (3–5)

rcll 1 37.7 (37–40) 73.7 (53–92) 73.0 (65–91) 76.4 (69–81) 34.6 (15–75) 83.9 (59–99)

rcll 2 1.0 (1–1) 4.0 (2–23) 1.1 (0–14) 2.0 (2–2) 1.8 (1–7) 2.7 (0–13)

sat cmplx 5.0 (5–5) 5.0 (5–5) 4.8 (4–5) 5.0 (5–5) 5.0 (5–5) 3.8 (2–5)

sat tw 5.0 (5–5) 5.0 (5–5) 5.1 (5–6) 5.0 (5–5) 5.0 (5–5) 3.6 (3–5)

trucks 6.0 (6–6) 6.9 (6–9) 6.3 (6–7) 7.5 (7–8) 6.5 (6–7) 5.7 (5–8)

turtlebot 14.0 (14–14) 12.5 (10–13) 13.0 (13–13) 8.0 (8–8) 14.0 (14–14) 13.0 (13–13)

umts-flaw 4.1 (4–5) 5.1 (5–6) 0.0 (0–0) 0.1 (0–1) 0.4 (0–4) 5.0 (5–5)

umts 48.0 (48–48) 45.5 (42–49) 44.2 (41–48) 43.8 (41–48) 41.5 (41–42) 45.7 (44–49)

TOTAL 143.8 (142–147) 181.7 (151–227) 172.0 (157–209) 171.6 (160–182) 131.7 (110–183) 187.7 (153–223)

Table E.2: Number of problems solved by each planner, shown as: average (solved by all 20 runs -

solved by at least one run).

5.1 Comparing DDA to the Baseline

We begin by comparing DDA, with the default parameter values (tu = 100, γ = 1,

and nexp = 1000), to the baseline. These values were the result of an initial guess,
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which we verified empirically. In situated temporal planning, the time elapsed during

planning affects search decisions. This introduces noise due to multiple processes

sharing the same CPU, as well as features such as Intel Turbo Boost, which vary the

speed of the CPU according to load. Thus, in this experiment we ran the planner 20

times on each planning problem. Each run was limited to 200 seconds of CPU time.

Table E.2 shows the (average) number of problems solved in each domain for each

planner. Each entry shows the average number of problems solved in that domain by

that planner (averaging over the 20 runs). Furthermore, in parentheses we give the

number of problems solved by all 20 runs (of the given planner in the given domain)

and the number of problems solved by at least one of the 20 runs (of the given planner

in the given domain). These numbers serve as a confidence interval of sorts, as they

indicate ease of replication, thus we denote them by low bar and high bar, respectively.

Looking only at the DDA and baseline columns for now, observe that DDA solves

38 more problems than the baseline. Interestingly, the low bar of 151 for DDA is

higher than the high bar for the baseline – that is, there were 151 instances that were

solved by all 20 runs of DDA, compared to 147 that were solved by at lease one run

of the baseline.

Also note that the “noise” (the difference between the high bar and the low bar) for

DDA is much higher than the baseline. This is because the baseline only uses elapsed

search time to prune search nodes, but otherwise keeps the same ordering between

nodes based on f -values. On the other hand, DDA uses elapsed time to compute Q′,

thus changing the ordering between nodes.

However, looking at the total coverage could be misleading, as the numbers of

problems in each domain are different — and the number of solvable problem even

more so (varying from about 5 to almost 100). Thus, we also count in how many

domains DDA outperformed the baseline. DDA beats the baseline in 4 domains:

airport, RCLL (with 1 and 2 robots), trucks, and UMTS flaw, and loses only in 2

domains: turtlebot and UMTS.

To further analyze this result, we exploited the fact that we have 20 different runs

for each planner on each problem. Thus, we can perform a statistical significance

test on the number of times each planner solved each problem, and check whether

DDA is statistically significantly better than the baseline on each problem, whether
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Domain baseline DDA

airport 0 1

pw-nt 0 0

rcll 1 7 48

rcll 2 0 4

sat cmplx 0 0

sat tw 0 0

trucks 0 2

turtlebot 2 0

umts-flaw 0 1

umts 7 1

TOTAL 16 57

Table E.3: Statistically significant wins

baseline DDA

Domain 0.25 0.5 2 4 0.25 0.5 2 4

airport 19.0 19.0 19.0 19.0 20.0 20.0 20.0 20.0

pw-nt 0.0 0.0 9.0 12.1 0.0 0.0 10.0 12.2

rcll 1 4.2 9.0 39.4 46.3 10.1 35.8 70.7 72.6

rcll 2 0.0 0.0 1.0 2.0 0.6 0.2 5.4 8.4

sat cmplx 0.0 0.0 5.0 5.0 0.0 0.0 5.0 5.0

sat tw 0.0 0.0 6.0 7.0 0.0 0.0 6.0 7.4

trucks 0.0 0.0 7.0 13.0 0.0 0.0 9.1 13.0

turtlebot 0.0 4.1 14.0 14.0 0.0 4.0 14.0 14.0

umts-flaw 0.0 4.8 4.3 2.2 3.5 5.5 5.0 5.0

umts 16.0 33.7 42.0 42.0 16.0 35.4 42.9 42.0

TOTAL 39.2 70.6 146.7 162.6 50.2 100.9 188.1 199.6

Table E.4: Coverage with different TIL multipliers

the baseline is statistically significantly better than DDA, or whether there is no statis-

tically significantly difference. Specifically we used the Mann-Whitney U-test (Mann

and Whitney 1947), a non-parametric test that checks if one variable is more likely to

have a higher value than another. Table E.3 reports the number of problems in each

domain in which the baseline or DDA were statistically significantly better than the

other. The results here correspond well with the domains listed above, and show that

in total DDA is statistically significantly better than the baseline on 3.5 times more

problems.

5.2 DDA Ablation Studies

Having seen that DDA outperforms the previous work in situated temporal planning,

we performed some ablation studies to test which of the features of DDA contribute

the most to its success. We considered the following planner variants:

DDA(nexp = 1) immediately starts with DDA, instead of waiting 1000 node ex-

pansions for the estimates to stabilize.

DDA(γ = 0) uses γ = 0 to compute Q′(i), thus ignoring the slope later component

of Q′.

DDA(hs) uses standard heuristic search based on Q′, instead of doing tu expan-

sions in the chosen subtree.
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In all of these variants, the other parameters were kept the same as the default

configuration. Table E.2 also shows the results for these variants. The results show

that, indeed, every one of these features contributes somewhat to the success of DDA,

with the focused search leading to many more solved problems. Interestingly, in the

turtlebot domain, where DDA loses to the baseline, the pure heuristic search variant

solves all the problems — the same as the baseline. This is likely because there are

dead ends in the domain (due to deadlines expiring), and heuristic search does better

at avoiding these.

5.3 Automated Parameter Tuning for DDA

The results we presented above were based on hand-chosen default parameter set-

ting for DDA. On the one hand, this is only one point in a large space of possible

parameter settings, and thus DDA has the potential for even better performance. On

the other hand, there could be a concern that these parameter settings were chosen

based on their performance on the problem domains being evaluated, and thus there

is overfitting in the process.

Therefore, we also show that it is possible to automatically find good settings for

each domain automatically, using SMAC – Sequential Model-Based Algorithm Con-

figuration (Hutter et al. 2011; Lindauer et al. 2017). To avoid overfitting, we divided

each domain into 2 folds – the evenly numbered problems and the odd numbered

problems (this was done to try to maintain the same distribution of problem sizes in

both folds). We then used SMAC — specifically, Bayesian Optimization and Hyper-

Band (Falkner et al. 2018; Li et al. 2017) — to find the best configuration for each fold.

This configuration was then used to evaluate the other fold. The results reported here

use the configuration trained on the even problems to measure the performance of

DDA on the odd problems, and vice versa — thus avoiding overfitting.

We gave SMAC 72 hours to find the best configuration. We fixed the values of

minp f and β, as well as the decision to use the subtree-focused search. Thus we

searched for values for the remaining parameters: γ was limited to values between

-10 and 10, tu to values between 10 and 1000 (on a logarithmic scale), and nexp to

values between 1 and 10,000 (also on a logarithmic scale). The score for each run was

the total search time in seconds (if the problem was solved), or 231 if the problem was
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not solved. To overcome noise, each problem was run 3 times, and the average score

was used.

Table E.2 also reports the results of DDA tuned for each domain (these are the

combined results from both configurations in each domain). Overall, the domain-

tuned version of DDA outperforms DDA in coverage. However, in a few domains,

performance is actually worse. Notably, these are the domains where DDA solves very

few problems to begin with (up to 7), and thus the signal for training is rather weak.

On the other hand, in domains where DDA already solved 10 or more problems,

the domain-specific parameter tuning helped improve performance. We believe this

problem could be alleviated by using a random problem generator, but this is beyond

the scope of this paper.

5.4 Evaluating the Impact of Tight Deadlines

We conclude the empirical evaluation by examining more closely when DDA outper-

forms the baseline. First, note that when the deadlines are very loose, there should

be no difference between DDA and the baseline, as they will both have time to ex-

plore the search space. Second, when the deadlines are very tight, both approaches

are likely to fail to find a solution before the deadline — in fact, this is the case in

pipesworld-no-tankage (pw-nt). Thus, we expect DDA to outperform the basline in

the “Goldilocks” zone, where deadlines are tight, but not too tight.

To evaluate this claim empirically, we ran the baseline and DDA on the same

problem instances as before, modified by multiplying the TILs in the problem by a

factor. We tried factors of 0.25 and 0.5 (for tighter deadlines) and 2 and 4 (for looser

deadlines). The number of problems solved by each planner in each domain is shown

in Table E.4, where the number in each cell is the average of 10 runs.

First, observe that DDA outperforms the baseline overall for all multipliers. Sec-

ond, looking at the pipesworld domain (pw-nt), we can see the phenomenon we

described above. For multiplier of 0.25 and 0.5, both approaches solve 0 (and from

Table E.2, for a multiplier of 1, both solve 4). When the multiplier is 2, DDA solves 1

more problem than the baseline, but when the multiplier is 4 (and deadlines are now

very loose), the difference becomes only 0.1. A similar phenomenon occurs in rcll 2

and in trucks.

137



Paper E. Situated Temporal Planning Using Deadline-aware Metareasoning

6 Discussion

We advanced a formal metareasoning approach for situated temporal planning. We

note that optimizing the time allocation in an algorithm portfolio with known prob-

abilistic performance profiles is a special case where there is a common deadline by

which all processes must deliver the result, namely the (usually) known time limit

per instance. Despite using rather crude estimates, the enhanced planner empirically

outperforms previous work. This is an important step in making situated temporal

planning practical. It also demonstrates the enduring power of metareasoning as a

productive perspective on rational resource-bounded problem-solving.

We assumed here that the plan must be completed before execution. However,

with very tight deadlines, it may be necessary to start execution before a complete

plan is found. We intend to expand the metareasoning scheme to a (more compli-

cated) model which supports execution of actions while still searching for a plan.

Finally, we mean to enrich OPTIC with other metareasoning schemes (Shperberg, Fel-

ner, et al. 2020) tailored for the problem of minimizing expected cost (rather than

trying to maximize the probability of finding a solution).
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Abstract

Consider the MaxScore algorithm selection problem: given some optimization problem in-

stances, a set of algorithms that solve them, and a time limit, what is the optimal policy for

selecting (algorithm, instance) runs so as to maximize the sum of solution qualities for all

problem instances?

We analyze the computational complexity of restrictions of MaxScore (NP-hard), and pro-

vide a dynamic programming approximation algorithm. This algorithm, as well as new greedy

algorithms, are evaluated empirically on data from agent runs on Angry Birds problem in-

stances. Results show a significant improvement over a hyper-agent greedy scheme from re-

lated work.

1 Introduction

Algorithm selection is of significant interest to researchers in AI, and other fields

where more than one algorithm is available to solve problems under computational

resource constraints (Rice 1976; Huberman et al. 1997; Xu et al. 2008). This paper

examines a variant of algorithm selection ("MaxScore") where one needs to solve a

set of optimization problems, with computational resource (assumed here to be time)

limitation being over the entire set. This generalizes the standard setting handled

in, e.g. SAT solver algorithm portfolios, where the time limit is separate for each

individual problem instance.

Our original motivation for the MaxScore setting was combining multiple pro-

grams that compete in the AI Angry Birds (Copyright Rovio Entertainment) compe-

tition, on which we also base the empirical results of this paper. Angry birds is a

physical simulation video game. In the AIbirds competition, each agent program (or

human) is presented with N previously unseen game levels (problem instances). The

agents can select a level to play, where at each level the agent is presented with a

screen-shot representing a physical simulation. The agent is supposed to kill off all

the pigs with catapulted birds (shots), thereby completing (winning) the level. Points

for completed levels are gained for destroying objects (pigs and blocks), and for using

as few birds as possible. The agent may play any level as many times as desired, until
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its overall allocated time (typically 10 or 30 minutes) expires. Level score is the maxi-

mum achieved in all attempts, with total score being the sum of level scores (typically

4 or 8 levels in past competitions).

Of the numerous AI techniques used in AI birds agent programs, to-date none

have achieved near-human performance; each program has strengths and weaknesses

in different areas of the game. Rather than attempting to create a better AI for Angry

Birds, our goal here is one of meta-reasoning: use a portfolio of existing programs to

play better, an idea suggested originally by (Stephenson and Renz 2017) with promis-

ing initial results. The focus of this paper is on how to do this combination optimally

given the available information, in a decision-theoretic sense, rather than on the as-

pect of learning to fit the program to the problem instance. In addition to the research

interest of this meta-reasoning problem, such an optimization might have an impact

on algorithm portfolio optimization in general.

Informally (see Section 2 for the formal definition) we are given a set of problem

instances (levels), to each of which we can apply any of a set of given algorithms

(agents). Each such application uses up an unknown amount of time, and results in

a score for the level that can be observed after each algorithm run terminates. Our

meta-reasoning problem is to find a policy for selecting which agent to apply to which

level, at any point in time, such that the sum of scores for all the levels at timeout is

maximized. Note that in order to make this policy optimization well defined, one

must specify some prior knowledge about scores and runtimes. In this paper we

assume that these are specified by random variables with known distribution models.

Following the formal problem statement (Section 2), we analyze the computa-

tional complexity of restricted versions of our score maximization problem (Section

3.1: NP-hard even with known independent scores and runtimes). An approximation

algorithm for one simple case is proposed, as well as faster greedy heuristic-based

algorithms (Section 3.2). Empirical evaluation on scores and runtimes gathered from

actual agent program runs show that using greedy expected improvement was near-

optimal in practice (Section 4), and much better than the greedy scheme based on just

expected score from (Stephenson and Renz 2017).

We then briefly examine the case of unknown independent distributions. These

we treat as a distribution over performance profiles, i.e. a distribution over score
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and runtime distributions (Section 5), with parameters that have to be learned from

previously observed problem instances. This results in a model with induced depen-

dencies, which makes the meta-level decision problem harder, in addition to the above

learning problem. A naive learning method based on features from (Stephenson and

Renz 2017; Tziortziotis et al. 2016) is proposed, and an empirical evaluation shows

that our proposed greedy algorithm (coupled with belief updating) still performs

well despite the low-quality learning.

2 Formal Problem Statement

This section describes the formal metareasoning MaxScore problem. In order to make

the statement as general as possible, we abstract away from Angry Birds programs

and levels, and present this as a sequential decision problem under uncertainty.

A MaxScore problem is a 4-tuple (I, A, T, P): I is a set of problem instances to be

optimized (game levels in Angry Birds); A is a set of algorithms (or agent programs);

T is a time limit; and P is a known distribution model over problems in I, agents in

A, that describes the (non-negative) score S(a, l, i) achieved by agent a ∈ A and the

(positive valued) runtime T(a, l, i) of a when applied to problem instance l ∈ I during

decision-making round i of the problem-solving task (or game play). Distribution P

(also known as a performance profile (Zilberstein and Russell 1996)) can be defined in

various ways. We consider the following cases for P:

1. P is deterministic.

2. P is a known distribution with independent variables.

3. P is a distribution with dependent variables (some of which are unobservable).

A policy π is a mapping from process histories to actions. The process is to se-

lect, at each round i ≥ 1, an agent program a(i) to apply to a problem instance

(level) l(i), given the past observations, according to π. The results S(a(i), l(i), i) and

T(a(i), l(i), i) are observed after the selection at round i. Then i is incremented as we

go to the next round. The process stops when we reach the time limit, i.e. at the first

k such that:
k

∑
i=1

T(a(i), l(i), i) > T
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The score of the process is the sum of maximal achieved scores for each problem

instance, i.e.

S = ∑
l∈I

k−1
max
i=1

S(a(i), l(i), i)δ(l, l(i))

where δ(i, j) is the Kronecker delta (1 if i = j, 0 otherwise). The problem is: find a

policy (mapping from process history, or alternately belief state and round number,

to (agent, problem instance) pairs) that maximizes the expected value of S. This is the

sequential (adaptive) decision making version of the problem.

We also consider, for computational complexity analysis, simpler linear settings of

MaxScore, where the decision on which agents to run on which problem instances

(and in which order) is decided only once, in advance. A policy in this setting is

simply a sequence of (agent, problem instance) pairs. The linear setting is the same

as the batch setting (also called non-adaptive) commonly used in the research literature

(Shperberg and Shimony 2017), except that if the runtimes are not both known and

deterministic, one must specify the ordering so as to have a well-defined policy (some

of the agents may not get to run at all, due to runtimes uncertainty).

2.1 Performance Models

Assuming that the distribution model is Markov, the MaxScore problem is a POMDP

with states defined by the current maximum scores vector cR and the play time

elapsed. As the number of rounds is not known in advance, we define the prob-

lem as an indefinite horizon POMDP with terminal states being those where the sum

of runtimes exceeds T 1. The transition probabilities in this POMDP are trivially (and

deterministically) defined given the score and runtime achieved in the current round

(which in turn are defined by distribution P). The reward function is 0 except for tran-

sitions into terminal states. In general, POMDPs are intractable (PSPACE complete

even if the belief space is finite). The actual complexity of MaxScore depends on the

setting (sequential vs. linear/batch), on the performance profiles distribution model

P, and on the size of sets I and A.
1Because the timeout T is known, one could use a finite horizon POMDP with T time-slices, but this

would necessitate many dummy transitions, for time points where an agent is running and no decision

is to be made, which is inefficient.
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A major issue is the performance profile (distribution model) P. Typically, exactly

what scores and runtimes to expect is unknown, except by running the programs on

the problem instances, which is too late to make the needed decision. However, we

can run the programs on similar instances, collect statistics and learn a prediction

model given instance features. Related work involved learning to predict the expected

score of an agent in an unseen level (Stephenson and Renz 2017). However, as argued

below, such information is insufficient for optimal choice: one may need to predict the

whole score distribution (or equivalently, the expected improvement over each possible

current score).

If the agent programs are effectively memoryless, i.e. attempt to solve the level

from scratch each time they encounter it, then the order of the observed scores and

runtimes is irrelevant. This behavior is reasonable for Angry Birds, as the game is

effectively stochastic. Additionally (unlike search problems in most search domains),

even if an agent knows the optimal play, it must still wait for the simulation to run

its course, which usually takes on the order of one minute of real time per level

attempt. Finally, the correlation coefficient between the actual score and time results

measured over a few dozen instances was very small (≈ −0.015). Although this does

not preclude a more complicated dependency between them, modeling score and time

as independent is a reasonable approximation. We thus consider the agent scores and

runtimes for a problem instance as i.i.d samples drawn from the distributions PS(a, l)

and PT(a, l), respectively. If these distributions are known, the MaxScore problem is

in fact an MDP, analyzed below.

3 Analysis: Known IID Case

We examine the computational complexity of some settings of the MaxScore problem.

We begin with the fully deterministic case (scores and runtimes known in advance),

and proceed to the independent case.

3.1 Complexity: Restricted Versions

We show that the MaxScore problem is NP hard even in the following extremely

restricted cases:
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OPT(rT, cR) = max
a∈A
l∈I

 ∑
r∈

sp(PS(a,l))

∑
t∈

sp(PT(a,l))
∧t≤rT

OPT(rT − t, R′)× PT(a, l)[t]× PS(a, l)[r] + ∑
t∈

sp(PT(a,l))
∧t>rT

m
∑
1

cRi × PT(a, l)[t]


Figure F.1: Optimal Solution to the MaxScore problem

1. Independent score distributions, deterministic runtimes, and only a single prob-

lem instance (|I| = 1).

2. Deterministic scores and runtimes, with |A| = 1 (but with |I| unbounded).

We begin with the latter instance, as proving NP-hardness here is immediate

through a straightforward mapping from the Knapsack problem. Simply map Knap-

sack item values to scores, item weights to runtimes, and the weight limit to T. Note

that as the scores and runtimes are deterministic, in this case there is no difference

between a linear setting, a batch setting, and a sequential setting of the problem.

With only one problem instance, we need to be more careful, but still get (see

appendix for proof):

Theorem F.1

The linear setting of the MaxScore problem with independent score distributions,

deterministic runtimes, and |I| = 1, is NP-hard.

We believe that the complexity of sequential setting with the same restrictions is at

least as hard as the linear setting, but have not proved it. Also note that the linear

setting MaxScore problem with |I| = 1 is non-trivial even if we further restrict it

to unit runtimes. For example, using a natural greedy scheme that picks the agent

with the best expected score can be suboptimal. Consider having agents A, B, C,

with time limit T=2. Suppose A always scores 100, B scores 101 with probability 0.99

and 0 otherwise, and C scores 200 with probability 0.001, and 99 with probability

0.999. A greedy scheme would first pick A, as it has the certain value 100, higher

than the expected scores of B and C. In fact the optimal policy is to pick B and C

(expected score just over 101, whereas anything containing A achieves less than 101).

The computational complexity of this setting of MaxScore is, as far as we know, an

open problem.
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3.2 Approximation Algorithms

Using dynamic programming schemes it is possible to achieve a pseudo polynomial

algorithm for the case of (known distribution) independent scores and runtimes, and

|I| bounded by a constant, using the following scheme. (The assumption that |I| is

bounded by a constant is reasonable for e.g. AIbirds competitions, where |I| is 4

or 8.) Additionally, we are assuming that score items (e.g. score for killing a pig

in Angry Birds) and runtimes are integer valued, and that the time span and score

items have a unary representation in the input. The following dynamic programming

value determination scheme (a variant of the Bellman equation) computes the optimal

policy, and has a time complexity linear in the time span and the maximum score, and

exponential in |I|.

Let OPT(rT, cR) be the optimal solution value to the MaxScore problem with rT

remaining time, and current maximum score vector cR = 〈cR1, . . . , cRm〉. The value

determination recursive equation for OPT(rT, cR) appears in Figure F.1, where R′ =

〈cR1, . . . , max{cRl, r}, . . . , cRm〉, and sp(D) is the support of distribution D. The value

of OPT(T, 〈0, . . . , 0〉) is that of the optimal policy at the initial state.

If the score distributions are continuous, or have too many values, we can round

them into bins, achieving a (1− ε)-approximation to the optimal policy. Likewise dis-

cretizing the runtime distributions is possible, but here near-optimality is not guaran-

teed. Although the dynamic programming approximation scheme can be computed

in pseudo-polynomial time, it is still too computationally demanding to be practical.

We would thus like to use a greedy scheme in practice, and the one that comes to

mind immediately is to use the agent that has the best expected score, as essentially

done in (Stephenson and Renz 2017). A slightly better scheme is to take into account

the runtime, and use the ratio of expected score over expected runtime. However, it

is easy to show that these schemes are far from optimal (as verified by the empirical

results).

For example, suppose we have only one problem instance and two agents. We have

already achieved a score of 10,000, and have time for exactly one more run. Suppose

the first agent always scores 10,000. The second agent scores 100,000 with probability

0.05, and otherwise fails and scores 0, thus its expected score is 5,000. The above

greedy schemes would select the first agent and always get 10,000, while the optimal
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policy would obviously select the second agent, to possibly end up with 100,000 (with

expected final score 10,500). An improved greedy scheme instead looks at the expected

improvement to the score over the current score, i.e. the value:

E[S(a, l, i)−max
a∈A

i−1
max
j=1

S(a, l, j)] (F.1)

rather than just the expected score E[S(a, l, i)]. (Consider S(a, l, j) to be 0 if agent a

was not selected in round j to be run on problem instance l.) Although the improved

greedy scheme is suboptimal even for unit runtimes, in practice it does well (Section

4).

4 Experiments: Known IID

Quality/runtime tradeoffs for the independent model were examined for score and

runtime distributions based on runs of AIbirds algorithms on original Angry Birds

game levels. Each algorithm was run 10 times on each level to obtain the empirical

distributions, which were then treated as if they were the true distributions. Levels

that caused issues with the agent’s vision module were filtered out.

We applied the meta-agent to the open source versions of the following five ex-

isting agents: Naive, AngryBER, ihsev, Eagle’s Wing and planA, which competed in

past AIBirds competitions. Note that these versions are not necessarily identical to

the versions submitted for the competition. All tests were conducted on Windows

10 using a machine with Intel(R) i7-4700HQ 2.40GHz processor and 12 GB RAM. The

evaluation process was performed using different numbers of levels and time budgets

as described in Algorithm 1.

We also evaluated some of the algorithms in AIBirds competition settings: 8 levels

with T = 1800 seconds.

The following optimization algorithms were compared:

1. Dynamic Programing (optimal): compute the recurrence relation in Figure F.1,

using memoization of the results from all recursive calls.

2. Binned Dynamic Programing(X,Y): same as the optimal solution, with scores

rounded up to the next multiple of X , and times rounded to the next multiple
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Algorithm 1: Evaluation process

1 for 1 to 50 do

2 for Every number of levels and time budget T configuration in

{2, 3, 4} × {200, 400, 600, 800, 1000} do

3 Draw random levels uniformly from the level pool.

4 for 1 to 10, 000 do

5 while Time budget was not exceeded do

6 Compute policy and choose a move using collected statistics as

true distribution.

7 Execute the selected move (agent and level) by drawing score

and time according to the statistics.
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of Y. We used this algorithmic scheme with X ∈ {1, 1000, 10000} and Y ∈

{1, 10, 25}.

3. Score Greedy: choose the agent and level that maximize the expected score.

4. Rate Greedy: choose the agent and level that maximize the expected score di-

vided by the expected time given that the time is less than or equal to the re-

maining time, multiplied by the probability that the time is less or equal to the

remaining time.

5. Improved Score/Rate Greedy: same as the score/rate greedy except for consid-

ering expected score/rate improvement instead of expected score.

6. Round Robin Score Greedy: the algorithm used by the hyper-agent from (Stephen-

son and Renz 2017), which selects a level using round-robin, and chooses the

agent that maximizes the expected score for that level, preferring agents not

selected in previous attempts.

7. Play Single Agent(A): select a level using round-robin, always with agent A.

This scheme was evaluated for each of the 4 possible agents.

8. Random: draw a pair of level and agent uniformly.

The results appear in Figure F.2. The scores in the plot are normalized to the

highest score for each setting. For clarity, we show only a subset of the algorithms. In

Play Single Agent policies, we show only the maximum value among them. The score

greedy and improved score greedy were dominated by the rate greedy and improved

rate greedy respectively, and are not shown. Finally, we showed the Binned Dynamic

Programing(10000,10) as a sole representative of its category, since it achieved the

best balance between runtime and score. The optimal policy did not always result in

the best score, as the process is stochastic and thus exhibits measurement noise. The

results indicate that the optimal policy is indeed the best in terms of scores. However,

the binned version and the improved rate greedy achieved near-optimal results. When

considering runtime and space usage, the optimal solution could not solve instances

greater than 4 levels with T = 400 time budget. The binned version was able to

solve all instances, with a maximal overhead of 13.7 seconds and a maximal memory
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usage of 52 MB across all instances with 4 levels or less. However, it required an

average of 335 seconds and 270 MB of memory to handle the full competition setting

(8 levels with 1800 seconds time budget). All the other algorithms ran in negligible

time (several milliseconds) and memory. This makes the improved rate greedy the

best algorithm in terms of balance between score and resources. The large gap in

scores between schemes that selected instances either randomly or in round-robin

fashion and those that attempted to optimize instance selection (improved greedy

and dynamic programming) suggest that the multi-instance setting is very different

from the single instance setting, and that a good instance selection scheme is crucial.

The apparent increase in the gap as the number of instances grows further supports

this observation (Figure F.2). Note that in the experiments we did not include the

optimization runtime in the total available runtime T; but in a competition it must

be. Also, the simulation runtime of the agents averaged roughly 90 seconds, so 1800

seconds consists of about 20 rounds (agent runs).

5 Unknown Distributions

A major point of competitions like AIbirds (as well as other competitions, such as

IPC, SAT-solving, etc.) is that they are done with previously unseen problem instances,

so the score and runtime distributions are unknown. The latter issue then becomes a

learning problem, which can be modeled by treating the agent performance quality as

hidden random variables, with some assumed prior distributions based on observing

similar problem instances. We adopt a naive learning scheme (described briefly below

for independent scores and runtimes for simplicity, as implemented for the AIbirds

meta-agent).

5.1 Unknown IID Score and Runtime

In our naive learning scheme, we are assuming that agent performance profiles of a

previously unseen problem instance are (almost) equal to their performance profile

on some problem instance(s) for which performance statistics were already collected.

Hence, we are essentially taking a case-based reasoning (CBR) approach to predicting

the performance profile for an unknown instance. However, we do not assume knowl-
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Figure F.3: Dependency model (Bayes net fragment)

edge of which of the previously seen performance statistics fits the current instance.

Therefore, if we need to predict an agent performance Q(a, l, i) for round i of the

current problem instance l (which we model as the score and runtime iid PS(a, l)

and PT(a, l)) it makes sense to condition on the (unknown) agent performance profile

Q(a, l) for the current problem instance. Essentially, what we need is a mapping from

features to agent performance (i.e. distributions over score and runtime distributions),

as we do in this paper.

The mapping we adopt here is simply a smoothed version of the performance

profiles of the K most similar instances. (Smoothing is done in by assigning scores

and runtimes into bins.) That is, for every problem instance l in the training set, and

every agent program a, collect and store the score and runtime distributions estimate

as Q(a, l) indexed by the feature values (vector F(l)) for problem instance l.

When a new problem instance l is encountered online, compute its feature vec-

tor values F(l), and find the K most similar instances l1, ..., lK according to some

appropriately defined similarity measure s(li, l). Now we assume that the agent

performance for instance l has a distribution over performance profiles, and that it

is equal to the (smoothed version) of its performance profile for some instance li,

with probability proportional to s(li, l). That is, denote by B(a, l) a K-valued random

variable, with integer values denoting the respective Q(a, li) profile. Then we have:

P(B(a, l) = i) = s(li,l)
∑K

j=1 s(lj,l)
.

The performance profiles describe both score and runtime distributions, and ad-

ditionally we assumed that these are drawn i.i.d. given the value of B(a, l). The

distribution model topology is summarized in Figure F.3, for each problem instance l

(shown for one agent program). We have an observable feature vector variable F(l).

Belief updating for this conditionally i.i.d. model is straightforward, as this is a naive

Bayes model.
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Algorithm

Number Of Levels

AVG2 3 4

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

IRG 0.71 0.72 0.70 0.75 0.78 0.66 0.71 0.63 0.67 0.69 0.55 0.63 0.62 0.63 0.67 0.67

BIRG 0.69 0.76 0.81 0.84 0.85 0.67 0.75 0.73 0.76 0.83 0.54 0.68 0.77 0.75 0.79 0.75

IRG (1) 0.60 0.60 0.64 0.63 0.59 0.57 0.54 0.52 0.52 0.54 0.54 0.53 0.46 0.44 0.47 0.55

IRG (50) 0.70 0.73 0.74 0.75 0.78 0.72 0.73 0.65 0.70 0.72 0.57 0.69 0.64 0.70 0.71 0.70

IRG (100) 0.70 0.70 0.71 0.75 0.76 0.68 0.69 0.64 0.67 0.70 0.59 0.65 0.62 0.63 0.68 0.68

Random 0.38 0.50 0.56 0.64 0.68 0.31 0.40 0.45 0.52 0.59 0.24 0.34 0.36 0.47 0.50 0.46

RRG 0.45 0.56 0.63 0.71 0.75 0.32 0.48 0.52 0.60 0.66 0.28 0.40 0.42 0.55 0.57 0.53

MSA 0.53(p) 0.80(e) 0.66(p) 0.72(i) 0.75(i) 0.48(p) 0.57(i) 0.60(p) 0.66(p) 0.65(i) 0.38(e) 0.60(p) 0.61(p) 0.64(p) 0.63(i) 0.62

Table F.1: Solution qualities as a fraction of the solution quality obtained by the "omnicient" improved

rate greedy scheme

In the conditionally i.i.d. model, since B(a, l) is unobservable, but its current dis-

tribution (thus belief state) changes given new observations of T(a, l, i) and S(a, l, i),

we now have a POMDP that we cannot hope solve optimally, especially in real time.

Instead, we can solve an MDP where the T(a, l, i) and S(a, l, i) are assumed to be i.i.d.

as before, but based on the current belief state of B(a, l).

That is, we can do the belief updating given the new observed scores and runtimes,

but in the policy computation act as if future updates are not observed. Then one can

re-compute the MDP policy after each observation and belief update. However, the

MDP solution was also quite computationally intensive, and re-computation makes

it even more so. As the improved greedy scheme performed almost as well as the

MDP solution w.r.t. optimality, we no longer considered using the MDP solution, for

practical reasons.

Obtaining a reasonable s(l, l′) is a learning problem, which was tackled by nor-

malizing all feature values to [0, 1], and taking the inverse of the Euclidean distance

as the similarity. Despite the naive nature of our method for defining prior probabil-

ity of unobserved levels, our algorithms, provided with such priors, showed a major

improvement over existing methods according the the results presented below.

5.2 Experiments: Unknown IID

We normalized each level’s score by maxScorel, an upper bound on achievable score

in each level, that can be computed using the features. We used the following subset

of features, described in (Stephenson and Renz 2017; Tziortziotis et al. 2016): #Blocks,

targetWidth, targetHeight, closestObjDist, farthestObjDist, density, #Objects, iceOb-
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jects, woodObjects, stoneObjects, #Pigs, helmetPigs, noHelmetPigs, #Birds, #RedBirds,

#YellowBirds, #BlueBirds, #BlackBirds, #WhiteBirds, varietyOfBirds, feasibleObjects,

feasiblePigs, roundObjectsNotPigs, icedTerritory, woodenTerritory, stonedTerritory,

averagePigsInBlocks, blocksWithPigs and #TNTs.

We tested the optimization algorithms using the same process as in Section 4,

where the algorithms had to rely on the predicted distribution based on the naive

learning scheme. We incorporated the resulting distribution in the following algo-

rithms: (1) the improved rate greedy defined in Section 4, using the distribution of dis-

tributions with K neighbors (denoted by IRG(K)) without belief updating; (2) a binned

version of the improved rate greedy with Bayesian belief updating, using a zero value

bin and 10 additional bins uniform in (i · maxScorel, i + 0.1 · maxScorel], 0 ≤ i ≤ 9

(denoted as BIRG). We used K = 128 in the learning process for both algorithms as a

default value. We also tested IRG with other K values, specified in parenthesis.

Table F.1 shows the solution quality achieved by the different algorithms, relative

to the quality achieved by an improved rate greedy algorithm acting on known dis-

tributions (denoted "omniscient"). The projected standard deviation σ′ of the results

was at most 0.013, small enough to maintain the performance ordering between the

algorithms as presented below. 2

In most cases, IRG (using unknown distributions) shows a major improvement over

the baseline methods: choosing agent and level at random; choosing the post-facto

best performing agent (denoted MSA, with the first letter of agent achieved that score

in parenthesis); and the round robin greedy algorithm (denoted as RRG) with known

expectation. BIRG (using unknown distributions), further improved the results, achiev-

ing an average solution quality of 0.75 despite using a naive learning scheme. Note

that when BIRG had sufficient time to perform updates (600 seconds and above) it

achieved the best score out of all tested algorithms. We also tracked the improve-

ment due to Bayesian updates by comparing the Wasserstein distance (also known

as "earth mover’s distance" (EMD)) between the predicted and true distributions. As

expected, results improved as the above EMD decreased, which also explains the im-

proved results for BIRG in the longer sequences. With Bayesian updating, the EMD

2The projection σ′ was based on the standard decviation σ measured over averages of sets of 35

random runs. To project to the 1000 runs per instance actually used we have σ′ = σ√
1000
35

.
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has improved from the beginning to the end of each test setting, with an average

improvement of 17.2% (not shown).

In IRG performance seems to improve with increased K, up to a point where this

trend peters off and even reverses. We believe that including too few cases is insuffi-

cient to predict the performance profile well, but too many cases leads to overfitting.

This phenomenon does not occur in BIRG due to the Bayesian updating which quickly

disregards irrelevant cases, and improves monotonically with K.

5.3 Experiments: Angry Birds Game

After experimenting using data collected from the game, we implemented a full ver-

sion of the meta-agent, which interfaces with the AIBirds server and plays the actual

game. Our meta-agent implementation starts by collecting information on all lev-

els using the provided vision module. Based on this, the meta-agent constructs an

objects-tree for each level, extracts features from the objects-trees, and predicts a per-

formance profile for each level and agent pair. Then, the meta-agent applies the BIRG

scheme to select a pair of agent and a level to play. The meta-agent sends the selection

to the server and observes the results of the run. The observations are used for belief

updating. The select-and-play process repeats until the time limit is reached.

Our evaluation was based on past competition levels (between 2014 and 2016), a

total of 72 levels (8 at a time with a 30 minutes time budget). The results are shown

in table F.2. The improved-greedy based meta-agent achieved an average score of

441, 752, compared to PlanA (357, 468), ihsev (321, 280), AngryBER (303, 166) and Ea-

gle’s Wing (323, 099). Note that the above 4 agents were the ones actually used by

the meta-agent, and all of them contributed to its score. The hyper-agent of (Stephen-

son and Renz 2017) achieved an impressive average score of 424, 740; However, the

authors, which are the organizers of the AI-Birds competition, had access to a total

of 8 agents as opposed to our 4 open-sourced agents. We strongly believe that using

the full set of 8 agents would have further improved the performance of our algo-

rithm, as in auxiliary experiments (not shown) our scheme was relatively robust to

adding agents (including dummy, useless agents). This belief is further supported

by Stephenson and Renz 2017 which showed that each individual agent actually con-

tributed to the score of the hyper-agent, meaning that the agents to which we had no
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Round Naive PlanA ihsev A-BER E-Wing Hyper Meta

Q 2014 187,180 314,540 109,920 188,710 282,110 332,270 418,210

S 2014 400,980 541,220 439,520 429,680 442,800 524,400 602,050

F 2014 209,130 193,110 257,410 90,110 250,970 338,330 231,480

Q 2015 68,020 316,850 163,790 367,000 346,760 351,300 372,260

S 2015 145,910 288,870 166,750 143,270 299,220 375,670 369,130

F 2015 131,660 452,860 458,030 392,420 191,970 483,610 490,050

Q 2016 251,080 313,440 444,560 310,600 252,100 336,840 426,570

S 2016 436,870 372,330 562,820 445,030 420,170 610,280 593,020

F 2016 390,050 423,990 288,720 361,670 421,790 469,960 471,380

Average 246,764 357,468 321,280 303,166 323,099 424,740 441,572

Table F.2: Actual game results using past competitions setting

access were actually not useless.

6 Discussion

In this paper we defined the MaxScore optimization problem, analyzed its computa-

tional complexity (NP-hard even under extreme restrictions), and suggested approx-

imation algorithms for known independent distributions. In practice, based on em-

pirical evaluation on AI birds, it turns out that a greedy algorithm based on expected

improvement is near-optimal. Despite the latter having no theoretical guarantees,

it currently seems to be the only viable alternative for real-time computation. Ap-

plying these results to unknown distributions requires learning performance profiles

given problem instance features. A naive learning scheme applicable to the AIbirds

application was proposed. This results in imperfect predicted distributions, which

degrades the meta-reasoning results. Nevertheless, the greedy algorithm is still the

better option, especially if the distribution model is updated using scores and run-

times observed during the run.

The MaxScore problem is closely related to algorithm selection, as originally defined

by Rice in 1976 (Rice 1976). Algorithm portfolios (Gomes and Selman 2001; Huberman
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et al. 1997) are a natural and popular extension of the idea of algorithm selection. Such

techniques are based on minimizing risk in economics. This approach defines a collec-

tion of algorithms (a portfolio) and establish a resource allocation to the algorithms in

the portfolio in order to solve a given problem instance (instead of choosing a single

algorithm for a given problem instance). This field has been studied extensively in the

last decades, including works on different computational settings (parallel, sequential

or in-between), many applications with outstanding results (Xu et al. 2008; Hoos et al.

2014; Kadioglu, Malitsky, Sellmann, et al. 2010; Kadioglu, Malitsky, Sabharwal, et al.

2011) and even meta-level techniques for choosing a selector (Lindauer et al. 2015).

Most common settings of algorithm portfolios focus on finding a solution to a sin-

gle given problem instance. Our setting generalizes the meta-level decision problem

solved in algorithm portfolios to choosing which problem instance to work on, as well

as selecting algorithms to use at any given time. A paper on dynamic restart policies

(Kautz et al. 2002) proposes an optimal restart scheme in a decision-theoretic sense,

similar to that defined in our paper, and with a scheme for learning a runtime distri-

bution. Since our setting allows non-binary scores, where it is important to get a good

score on a problem instance, rather than just solve it, the optimization scheme used in

the restart policies paper is not directly applicable here. The scheme they use to learn

runtime distributions may be applicable to our setting, but must be extended to pre-

dict score distributions as well before it can be used here. Maximizing the number of

instances solved is also mentioned in (Kautz et al. 2002), but their instances are drawn

randomly and independently, so there seems to be no allowance for the capability of

choosing to return to a previously run instance as in our setting, in addition to there

being no notion of instance score in (Kautz et al. 2002).

The MaxScore problem is also loosely related to multi-armed bandit (MAB) prob-

lems (Auer et al. 2002). Much of the related work on MABs does not assume a known

distribution, or even a distribution over distributions as done in this paper. Rather,

bounds on regret are analyzed, both asymptotic and finite. However, the fact that the

reward in MaxScore is the maximum rather than the sum makes it unclear how such

techniques might carry over. Additionally, in the motivating application of AIbirds,

the number of rounds is small, further complicating such attempts. In fact, if we tried

to apply an MAB scheme directly, we would get a random selection of problem in-
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stance, against which we did compare in the Angry Birds domain (random did poorly,

as expected).

A significant part of the research on algorithm portfolios and multi-armed bandits

focuses on learning issues. E.g. in (Kotthoff 2016), the focus is on analyzing problem

features and applying different varieties of machine learning techniques in order to

find scheduling policies for the portfolios. In this paper we achieved good results de-

spite using a rather naive learning scheme to obtain a mapping from features to score

and runtime distributions. Note that the relative performances in Table 1 still leave

much room for improvement by better predicting the distributions: these performance

figures are still well below the 1.0 value obtained by the an "omnicient" rate-greedy

scheme that has access to the true distributions. Introducing better learning schemes

for better prediction of the distributions should thus result in better performance.

Another issue for future work is learning the distribution models with time-score

and inter-round dependencies, thus extending MaxScore solutions to more general

settings of algorithm portfolios over optimization problems. Fully testing such gener-

alized scenarios would require changing the rules of the competitions to maximizing

total score over a global time limit, rather than the current setting where the time

limits are per-instance.
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Appendix: Proof of Theorem F.1

Theorem 1. The linear setting of the MaxScore problem with independent score distributions,

deterministic runtimes, and |I| = 1, is NP-hard.

Proof: by reduction from the optimization version of knapsack ((Garey and John-

son 1979), problem number [MP9]), re-stated below. Given a set of items S =

{s1, ...sn}, each with a positive integer weight wi and a positive integer value vi, a

weight limit W, find a sub-multiset S of S with a maximal total value, subject to: total
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weight of S at most W.

In the reduction, each agent represents an item in the Knapsack problem, where

PT(ai, l) = [1 : wi] and PS(ai, l) = [ε : vi, 1 − ε : 0]. As this is a simple one-to-

one mapping, we abuse the notation and treat the agents as if they are actually the

respective elements from S in the Knapsack problem. In the MaxScore problem, let:

T = W, H = max
si∈S

vi, M =
W

min
si∈S

wi
, ε =

1
M2H + 1

Let S be a candidate solution to the MaxScore problem, with m = |S| ≤ n. Assume

w.l.o.g. that S = {s1, ..., sm} and that the items are sorted in non-descending order of

values vi. Denote by P(S) expected value from selecting the items in the sequence S

as a policy. Then:

P(S) =
m

∑
i=1

viε(1− ε)m−i ≤
m

∑
i=1

viε

On the other hand, we have:

P(S) =
m

∑
i=1

viε(1− ε)m−i ≥
m

∑
i=1

viε(1− ε)m

≥
m

∑
i=1

viε(1− ε)M

From Bernoulli’s inequality, we have:

(1− ε)M ≥ 1−Mε = 1− M
M2H + 1

> 1− 1
MH

Therefore:

P(S) >
m

∑
i=1

viε(1−
1

MH
) =

m

∑
i=1

viε−
∑m

i=1 viε

MH

≥
m

∑
i=1

viε− ε = ε(
m

∑
i=1

vi − 1)

Now let S be an optimal solution to the MaxScore problem. Since S satisfies the time

constraint, we have ∑m
i=1 wi ≤ T = W, so S satisfies the weight constraint in the

Knapsack problem and is thus a solution therein. Assume in contradiction that there

exists a legal solution S′ to Knapsack s.t. ∑si∈S′ vi > ∑si∈S vi. Since the values of

the items in knapsack are integers, we know that ∑si∈S′ vi ≥ (∑si∈S vi) + 1. Thus, as

|S′| ≤ 1
e :

P(S′) > ε( ∑
si∈S′

vi − 1) ≥ ε( ∑
si∈S

vi) ≥ P(S)
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As S′ satisfies the timing budget in the MaxScore problem, it is a solution better than

S, a contradiction. So S is also an optimal solution to the Knapsack problem. �
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Abstract

NBS is a non-parametric bidirectional search algorithm proven to expand at most twice the

number of node expansions required to verify the optimality of a solution. We introduce

new variants of NBS that are aimed at finding all optimal solutions. We then introduce an

algorithmic framework that includes NBS as a special case. Finally, we introduce DVCBS, a new

algorithm in this framework that aims to further reduce the number of expansions. Unlike NBS,

DVCBS does not have any worst-case bound guarantees, but in practice it outperforms NBS in

verifying the optimality of solutions.

1 Introduction and Overview

Given a graph G, the shortest-path problem is to find the least-cost path from state

s to state g in G. Bidirectional heuristic search algorithms (denoted henceforth by

Bi-HS) interleave two separate searches, a search forward from s and a search back-

ward from g. Recent research (Eckerle et al. 2017) defined conditions on the node

expansions required by Bi-HS algorithms to guarantee solutions optimality. Follow-

ing work reformulated these conditions as a must-expand graph (GMX), showing that

the Minimum Vertex Cover (MVC) of GMX corresponds to the minimal number of ex-

pansions (Chen et al. 2017) required to prove optimality. Finally, Shaham et al. (2017;

2018) studied the GMX structure and its extension, GMXε , that exploits knowledge of

the minimal edge cost (ε), to characterize properties of the MVC.

Bi-HS algorithms can be classified as parametric or as non-parametric. Two para-

metric algorithms were recently developed. Fractional MM (fMM(p)) (Shaham, Felner,

Chen, et al. 2017) generalizes the MM algorithm (Holte et al. 2017) by controlling the

fraction p of the optimal path at which the forward and backward frontiers meet.

There exists an optimal fraction p∗ for which fMM(p∗) will expand exactly an MVC of

GMX, but p∗ is not known a priori. Another parametric algorithm is GBFHS (Barley

et al. 2018), which iteratively increases the depth of the search. It is parametric in

a pre-defined split function that determines how deep to search on each side at each

iteration. GBFHS with an optimal split function also converges to an MVC of GMX. How-

ever, such a split function is not known a priori. Without knowledge of the optimal
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parameter values, both algorithms may expand many more nodes than an MVC of GMX.

In this paper we focus on non-parametric Bi-HS algorithms. NBS (Chen et al. 2017)

is a robust state-of-the-art non-parametric algorithm that computes a vertex cover (VC)

of GMX whose size is at most 2|MVC|. We enrich this line of research and introduce

new settings and new algorithms that aim to find a VC of GMX. In particular, we make

the following contributions:

(1) We describe and motivate the problem of finding all optimal solutions, and intro-

duce two new versions of GMX (with/without ε) that are suited for such settings. This

results in four different problem settings, each with its own GMX.

(2) We introduce a 2-level framework for non-parametric Bi-HS algorithms and refor-

mulate NBS as a special case.

(3) Utilizing our framework, we adapt NBS to the four settings, while maintaining the

2|MVC| guarantee.

(4) We introduce a new algorithm Dynamic Vertex Cover Bidirectional Search (DVCBS).

It uses the same high-level framework we developed, but unlike NBS, always tries

to expand a VC of a dynamic GMX graph which is also introduced. Here too, four

versions are possible.

(5) Our experimental results show that the new variants of NBS, as well as DVCBS,

outperform previous variants of NBS for finding both the first and all optimal solutions,

expanding significantly fewer nodes in many cases.

2 Definitions and Background

Let d(x, y) denote the shortest distance between x and y, C∗ = d(s, g), and let fF, gF

and hF indicate f -, g-, and h-costs in the forward search, and likewise fB, gB and hB

in the backward search. The forward heuristic hF is admissible iff hF(u) ≤ d(u, g) for

every state u ∈ G and is consistent iff hF(u) ≤ d(u, u′) + hF(u′) for all u, u′ ∈ G. The

backward heuristic hB is defined analogously. Front-to-end Bi-HS algorithms use these

two heuristic functions and in this paper we assume that both are admissible and

consistent. Front-to-front Bi-HS algorithms use heuristics between pairs of states on

opposite frontiers, and are outside the focus of this paper; see Holte et al. 2017 for a

survey.
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2.1 Guaranteeing Solution Optimality

Unidirectional search algorithms must expand all nodes n with f (n) < C∗ in order to

guarantee the optimality of solutions (Dechter and Pearl 1985).

Eckerle et al. 2017 generalized this to Bi-HS by examining pairs of nodes 〈u, v〉

such that u is in the forward frontier and v is in the backward frontier. They defined

conditions for when such pairs should be expanded:

1. fF(u) < C∗

2. fB(v) < C∗

3. gF(u) + gB(v) < C∗

If u and v meet the three conditions, then to guarantee solution optimality every

algorithm must expand at least one of u or v in order to ensure that there is no path

from s to g passing through u and v of cost < C∗.

Definition G.1

For each pair of states (u, v) let lb(u, v) = max{ fF(u), fB(v), gF(u) + gB(v)}

In Bi-HS, a pair of states 〈u, v〉 is called a must-expand pair (MEP) if lb(u, v) < C∗.

The MEP definition is equivalent to the above conditions; for each MEP only one of u or

v must be expanded. In the special case of unidirectional search, algorithms expand

all the nodes with fF < C∗, which is equivalent to expanding the forward node of

every MEP. Bi-HS algorithms may expand nodes from either side, potentially covering

all the MEPs with fewer expansions.

Shaham, Felner, Sturtevant, et al. 2018 generalized the three conditions to handle

the case where a lower bound ε on the edge costs is available. In unit edge-cost

domains ε = 1, while in other domains one might iterate over all action costs and set

ε to their minimum. We denote this case by ε-case, as opposed to the base-case,

where no knowledge of ε is available. For ε-case, Condition 3 is changed to:

3. gF(u) + gB(v) + ε < C∗

Consequently, the lower bound is changed to:

lb(u, v) = max{ fF(u), fB(v), gF(u) + gB(v) + ε}

and an MEP is defined according to the new lb.

171



Enriching Non-parametric Bidirectional Search Algorithms

2.2 The Must-Expand Graph (GMX)

The problem of selecting the minimal set of nodes that cover all MEPs can be restated

as finding an MVC on the must-expand graph (Chen et al. 2017).

Definition G.2

The Must-Expand Graph (GMX) of a problem instance is an undirected, unweighted

bipartite graph. For each state u ∈ G there is a left vertex uF and a right vertex uB.

GMX has an edge between a left vertex uF and a right vertex vB if and only if (u, v) is

an MEP.

It follows that Bi-HS algorithms must expand a vertex cover (VC) of the induced

GMX when solving a problem instance. The MVC is thus a lower bound on the number

of expansions. Another version of GMX, denoted by GMXε , can be constructed for

ε-case (Shaham, Felner, Sturtevant, et al. 2018).

Figure G.1 illustrates different versions of GMX for the problem instance in Figure

G.1(a), in which C∗ = 3. Figure G.1(b) shows the corresponding GMX. The left (right)

vertices are ordered by increasing (decreasing) gF-costs (gB-costs). Additionally, ver-

tices with identical gF (or gB) are merged into a single weighted vertex, denoted as a

cluster. For example the cluster with gF= 1 includes both A and X and its weight is 2.

Similarly, an edge that connects clusters represents all possible edges between them

(the product of their weights), e.g., 6 edges connect the cluster with gF= 1 to the one

with gB= 1. Figure G.1(c) shows GMXε (ε = 1). Due to the addition of ε, some edges

that exist in GMX no longer exist in GMXε . For example, the left cluster (vertex) with

gF = 1 is connected to all right clusters with gB ≤ 1 in GMX but is only connected to

the right cluster with gB = 0 in GMXε .

2.3 The Minimum Vertex-Cover of GMX

Shaham, Felner, Chen, et al. 2017 introduced CalculateWVC() (see their Section 6.5), an

algorithm for finding an MVC of a GMX. This algorithm relies on the fact that all such

MVCs are contiguous and restrained in both directions. That is, there exist thresholds

tF, tB ∈ R such that tF + tB = C∗ (tF + tB + ε = C∗ for ε-case) for which a vertex u in

direction D is in the MVC if and only if gD(u) < tD.
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(a)

Problem

Instance

(b) GMX (c) GMXε

(d) GMXA (e) GMXAε

Figure G.1: Case Study: Different versions of GMX

CalculateWVC() iterates over all relevant pairs of values for which tF + tB = C∗

and finds the pair which induces the MVC. For example, in Figure G.1(b) the MVC (col-

ored blue) is induced by 〈tF, tB〉 = 〈2, 1〉 and includes only four nodes (s, A, X, g).

CalculateWVC() runs in time linear in number of clusters (O(C∗)) but assumes that

GMX and C∗ are given as input. Thus, it can only run post-priori, after C∗ was found

and the entire GMX was fully built (e.g., by running A* from both sides). Such infor-

mation is not available to any Bi-HS algorithm during execution. Therefore, Bi-HS

algorithms cannot guarantee that the VC they find is minimal. Hence, a main chal-

lenge of Bi-HS is to approximate an MVC by using only information available during

the search.
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3 Finding All Optimal Solutions

A common practice in the heuristic search literature is to halt the search once the first

optimal solution is found and verified. This problem comprises two tasks: (1) finding

a solution of cost C∗ and (2) verifying that there are no solutions with cost < C∗. Most

search algorithms interleave these tasks, completing them in an arbitrary order. The

GMX analysis above only handles the second task. Therefore, an MVC of GMX may not

capture the extra work needed to complete the first task of finding a solution (but

|MVC| is still a lower bound on the entire search). This is similar to only counting

nodes with f < C∗ as necessary expansions in unidirectional search, and omitting

nodes with f = C∗ that are expanded to find the goal (Dechter and Pearl 1985).

In many cases, all optimal solutions are required. For example, if not all the problem

constraints can be encoded due to privacy issues, competing objectives, partial knowl-

edge, etc. then an external decision maker is needed to choose a solution from the set

of all optimal solutions (Byers and Waterman 1984; Arthur et al. 1997; Mahadevan and

Schilling 2003). In other cases a solution may become invalid and an alternative solu-

tion needs to be obtained quickly (Siegmund et al. 2012; Isermann 1977). We denote

these problem spaces by ε-ALL-case when knowledge of ε exists, and base-ALL-case

otherwise.

Finding all optimal solutions only consists of a single compound task: verifying

that there are no undiscovered solutions with cost ≤ C∗ (as this includes the task of

finding solutions with cost C∗). Thus, we can generalize the analysis in Section 2.2

to the case of finding all solutions in a way that allows us to bound the number of

expansions required for the entire search. In addition, we show below that using this

formalization also helps in finding a first solution faster.

3.1 GMX for Finding All Optimal Solutions

The first step in generalizing the analysis for the task of finding all solutions is to

re-define MEPs to use ≤ instead of < in the three conditions. Let u and v be nodes in

the forward and backward frontiers, respectively. There can be an optimal path (of

cost C∗) that goes from s to u to v to g, if:

1. fF(u) ≤ C∗
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2. fB(v) ≤ C∗

3. gF(u) + gB(v) ≤ C∗

Likewise, gF(u) + gB(v) + ε ≤ C∗ is used in the ε-ALL-case. We define a pair of

states (u, v) to be an MEP for the all cases (we call such pairs must-expand-all pairs, or

MEAPs) if lb(u, v) ≤ C∗, where lb(u, v) is again the maximum of the three terms.

Theorem G.1

Let I = 〈G(V, E), s, g〉. A Bi-HS algorithm B will find all optimal paths in I if and

only if B expands at least one state from every MEAP.1

proof. If Case: Assume that B found all optimal paths but there is an MEAP〈u, v〉 where

neither u nor v were expanded by B. Consider the two paths: U from s to u with a cost

of gF(u); and V from v to g with the cost of gB(v). Let I′ = 〈G′(V, E)〉, h〉 be a problem

instance where 〈u, v〉 is an edge with cost ε. Therefore, there is a path P = U · V

from s to g in G′. Since 〈u, v〉 is an MEAP, the cost of P is gF(u) + d(u, v) + gB(v) =

gF(u) + gB(v) + ε ≤ C∗. However, B(I′) = B(I) 63 P, contradicting the assumption

that all optimal paths from s to g were found by B.

Only-If Case: Assume that B expanded at least one state from every MEAP, and there

exists an optimal solution P = 〈s = p0, . . . , pk = g〉 that was not found. Since the

heuristics are admissible, for all 0 ≤ i ≤ k, fF(pi) ≤ C∗, fB(pi) ≤ C∗. Since P was

not found, there exist nodes pi, pj ∈ P, pi 6= pj, in the forward frontier and backward

frontiers of B respectively, when the search terminates. P is an optimal path, thus,

gF(pi) + gB(pj) + d(pi, pj) = C∗. Since ε is a lower bound on the distance between

nodes, gF(pi) + gB(pj) + ε ≤ gF(pi) + gB(pj) + d(pi, pj) = C∗. Hence 〈pi, pj〉 is an

MEAP, contradicting the assumption that B expanded at least one state from every

MEAP.

Note that the proof holds in base-ALL-case if ε = 0.

We use the new must-expand-all conditions to define two new graphs: GMXA for

base-ALL-case, and GMXAε for ε-ALL-case, in a manner similar to GMX and GMXε

respectively, but with the ≤ conditions. Importantly, |MVC| of GMXA and GMXAε is a

lower bound on the number of nodes that must be expanded to complete the joint

task of finding all optimal solutions and verifying that there are no cheaper solutions.

1We assume B is DXBB (See (Eckerle et al. 2017)). We also assume B maintains a frontier of all

unexpanded discovered nodes, from which nodes are removed only upon expansion.
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By contrast, |MVC| of GMX and GMXεonly bounds the minimal number of expansions

to complete the (second) task of verifying that no solution with cost < C∗ exists.

GMXAand GMXAε for the example in Figure G.1(a) are shown in Figures G.1(d) and

G.1(e), respectively. As can be seen, each vertex has more neighbors due to the use

of ≤ instead of < in condition 3. For example, the cluster with gF = 1 is now also

connected to the cluster with gB = 2. Furthermore, since conditions 1 and 2 now also

have ≤, GMXA contains additional clusters (e.g., with gF= 0) and existing clusters may

now be composed of additional states (e.g., yi with gF = 1 are included in GMXA but

not in GMX).

Since GMXA includes more edges than GMX, the contiguous partition of their MVCs

may be different, as demonstrated in Figure G.1. The MVC of GMX (Figure G.1(b)) is

composed of the vertices {s, A, X} in the forward direction and {g} in the backward

direction. The MVC of GMXA (Figure G.1(d)) is composed of vertex s in the forward

direction and {g, D, C, B, A} in the backward direction. Note that X is part of the MVC

of GMX but not a part of the MVC of GMXA.

As a result, existing Bi-HS algorithms that consider GMX when aiming to find a

first solution should be modified to consider GMXA when trying to find all optimal

solutions. For example, the optimal fraction of fMM(p) for finding all solutions (1
4 for

Figure G.1(a)) is different from the optimal fraction for finding a first solution (2
3 ).

Furthermore, in section 4.2 we demonstrate that algorithms which consider GMXA

may be even better at finding the first solution.

4 A General Framework Encompassing NBS

Near-Optimal Bidirectional Search (NBS) (Chen et al. 2017) is a robust state-of-the-

art non-parametric algorithm that is guaranteed to expand a VC of GMX whose size

is at most 2|MVC|. In this section, we introduce a generalization of NBS: a two-level

framework which we call the Lower-Bound-Framework (LBF). NBS is a specific imple-

mentation of the low level of LBF. We then introduce additional algorithms in this

family which differ in their decisions at the low level of LBF.

LBF has two levels. The high level (Algorithm 1) maintains and dynamically in-

creases a global lower bound (LB) on the cost of an optimal solution. It keeps track of
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Algorithm 1: LBF high-level

1 C ← ∞

2 LB← min{hF(s), hB(g)}

3 while LB < C do

4 C=ExpandLevel(LB,C)

5 Increase LB to the next value

6 return C

all states in the frontiers (Open lists) of the two directions of the search. For each node

pair 〈u, v〉, lb(u, v) is defined according to Definition H.2 above, depending of course,

on the exact case (base-case, ε-case etc.). The global lower bound LB is set to be the

minimal lb among all pairs.2 The low level of LBF then needs to select valid nodes for

expansion, i.e., nodes that may be part of paths of cost ≤ LB. All the algorithms in the

LBF family discussed in this paper use the same high level, but differ in the low-level

selection policy.

4.1 The Low-Level Expansion Policy of NBS

The low-level policy of NBS is based on an approximate VC algorithm (Papadimitriou

and Steiglitz 1982) which repeatedly chooses an edge and adds both its endpoints

to the VC. Therefore, NBS repeatedly finds a pair 〈u, v〉 for which lb(u, v) ≤ LB and

expands both u and v. The implementation details of NBS, as done by the original

authors (outlined in Algorithm 2) are as follows. The frontier for each direction D

is split into two separate queues: waitingD (sorted by f -value), which serves as a

gateway to readyD (sorted by g-value). Nodes with a minimal f -value are moved from

waitingD to readyD, and only nodes from readyD are expanded. In the pseudo codes,

every line which includes D is repeated twice, once for each direction. First (Lines 2–

3), all nodes for which fD(u) < LB are moved to readyD. Next (Lines 6–7), NBS selects

a pair of nodes u ∈ readyF and v ∈ readyB for which gF(u) + gB(v) ≤ LB, and expands

both u and v. If no such pair is found, NBS repeatedly moves a pair of nodes for which

2Other Bi-HS algorithms also maintain and increase a global lower bound on the optimal solution,

e.g., C in MM and f Lim in GBFHS. These bounds use less information than LB of LBF which directly

depends on current knowledge on MEP as defined by the GMX theory and therefore is tighter.
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Algorithm 2: NBS Expand Level (LB, C)

1 while true do

2 while min f in waitingD < LB do

3 move best node from waitingD to readyD

4 if readyD ∪ waitingD empty then

5 Terminate search - no solution was found

6 if readyF.g + readyB.g ≤ LB then

7 ExpandD(C) node with min gD-value in readyD

8 else

9 if waitingD. f ≤ LB then

10 move best node from waitingD to readyD

11 else

12 return C

fF(u) ≤ LB and fF(u) ≤ LB from waitingD into readyD (Line 10) and continues to look

for a pair for which gF(u) + gB(v) ≤ LB. If such a pair is still not found, the low

level reports back to the high level that no valid pairs were found, causing LB to be

incremented.

Chen et al. 2017 proved three properties of NBS: (1) It is guaranteed to find an

optimal solution. (2) It expands at most 2|MVC| states while finding a VC in GMX. (3)

No other Bi-HS algorithm can have better worst-case performance.

4.2 Finding All Optimal Solutions with NBS

The original low level used for NBS by Chen et al. 2017 is based on the properties of

MEPs which use < C∗ in all three conditions. Therefore, NBS first considers nodes with

fF and fB which are strictly less than LB (Line 2). Nodes with fF and fB that equal

LB are only added lazily later (Lines 9–10 of Algorithm 2). We use NBSF and NBSFε (F

for first solution) to denote the original versions (Algorithm 2) for the base-case and

ε-case, respectively.

In order to be better suited for for finding all solutions we adapt the low-level
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expansion policy of NBS to be based on MEAPs which have ≤ in the three conditions.

Specifically, we modify the NBSF expansion policy to immediately consider all nodes

for which fD(u) ≤ LB by changing the < condition in Line 2 of Algorithm 2 to be ≤.

This change also eliminates Lines 9–11, as such nodes are handled eagerly in Line 2.

We use NBSA and NBSAε (A for all solutions) to denote these new versions which use

the modified expansion policy (with ≤ in Line 2) and aim to find a vertex cover of

GMXA and GMXAε respectively.

Note that there are many possible ways to implement the low level of NBS in terms

of how to move nodes from waitingD to readyD. NBSF and NBSA are special cases

directly inspired by GMX and GMXA.

4.3 Finding a First Solution with NBSA

An interesting phenomenon is that although NBSA is designed to find all solutions,

it may expand fewer nodes than NBSF, even when finding the first solution. The

explanation for this is as follows. The low level of NBSA utilizes more information

about GMX when making a decision. In an iteration where LB < C∗, nodes with

f = LB are part of GMX, and considering them earlier helps in increasing LB faster,

thus finding an MVC faster. In iterations where LB = C∗, a VC of GMX has already been

found, and nodes with f = LB can lead to a solution if one was not yet discovered.

An example of this phenomenon is presented in Figure G.2, where C∗ = 4 (the

edge between s and g). Both NBSF and NBSA begin by expanding 〈s, g〉 (LB = 1),

followed by 〈A, H〉 (LB = 2), at which point LB is incremented to 3. For NBSF readyB

will contain only K ( fF(K) = 2 while f = LB = 3 for all other nodes). NBSF will

expand 〈B, K〉 before moving other nodes to readyB (using Lines 10–11). Next, it

will expand 〈C, E〉, 〈D, F〉 and terminate after expanding 10 nodes. By contrast, in

NBSA after setting LB = 3 readyB will contain E,F,I,J and K (all with f ≤ LB = 3).

Since nodes with lower g-values are expanded first, NBSA will expand 〈B, E〉 and

〈C, F〉, terminating with 8 node expansions, without expanding nodes K and D (since

gF(D) + gB(K) = 4 > 3 = LB). Our experiments below suggest that this phenomenon

is rather common in practice.

Note that every pair expanded by NBSA in every iteration where LB < C∗ is an

edge of GMX. Thus, NBSA retains the 2|MVC| bound until finding a VC of GMX.
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Figure G.2: Comparing NBSA and NBSF

5 Bidirectional Search using Dynamic VC

We now introduce a new family of algorithms called Dynamic Vertex Cover Bidirec-

tional Search (DVCBS). It uses the high level of LBF but conceptually differs from the

NBS family in its low-level expansion policy. While NBS always expands both nodes

of a chosen MEP, DVCBS works by maintaining a dynamic version of GMX (DGMX) and

greedily expanding an MVC of the DGMX at each step.

DGMX is defined as follows. Its structure resembles GMX, with two main differ-

ences: (1) The full GMX is not available during the search. Instead, DGMX contains

only nodes in the forward frontier (generated not expanded) for constructing left ver-

tices, and only nodes from the backward frontier for constructing right vertices. (2)

The value of C∗ is not known during the search, thus edges of DGMX are defined on

pairs 〈u, v〉 such that lb(u, v) < LB. Since LB ≤ C∗, all such pairs are in fact MEPs of

GMX.

Note that DGMX shares all the interesting properties of the full GMX. Thus, vertices

with the same g-value can be merged to form a weighted vertex (cluster). More

importantly, CalculateWVC() can be directly applied to DGMX in time linear in the

number of its clusters. This is done in all low-level variants of DVCBS presented next.

5.1 Low-Level Expansion Policy in DVCBS

There are many possible low-level expansion policies based on DGMX and on its MVC.

Every node expansion deletes vertices and may add new vertices to DGMX, inval-

idating the most recently computed MVC. However, computing the MVC every time

DGMX changes incurs extra overhead (albeit linear in the number of clusters in DGMX).

Thus, an efficient expansion policy should balance between expanding many nodes
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and maintaining the most up-to-date DGMX and MVC. We experimented with multi-

ple expansion policy variants, and found that an efficient balance between these two

extremes is to expand a single cluster (containing all nodes with the same gF- or gB-

value) in every iteration of the high level. This results in a manageable amount of MVC

computations, while working on reasonably up-to-date information. Furthermore,

since all vertices in a cluster have the same g-value, LB may increase only after ex-

panding an entire cluster but never before. We only report experimental results for

this variant.

DVCBS contains several other decision points. First, there can be several possible

MVCs for a given DGMX. Additionally, as mentioned above, one cluster from MVC

should be chosen and expanded. Finally, the way we order nodes within the cluster

for expansion may affect the number of expansions before reaching a solution when

LB = C∗. We have experimented with many possible decision choices but report

the results in Section 6 using the best variant as follows. Select the cluster with

the smallest number of nodes among the clusters with minimal gF- and gB-values,

among all MVCs. Tie breaking for specific node expansion within a cluster orders

nodes according to their order of discovery.

Pseudo code of the low level of DVCBS appears in Algorithm 3. The life cycle

of DVCBS includes the following steps: (1) initialize DGMX, (2) CalculateWVC(), (3)

choose the cluster of nodes to expand from the MVC, and (4) update DGMX. Steps 2-4

are repeated until either an optimal solution is found or no possible solution exists.

To execute efficiently, DVCBS uses data structures denoted as CwaitingD and CreadyD,

which are similar to the waitingD and readyD queues of NBS, modified to use clusters.

5.2 Variants of DVCBS

Like NBS, DVCBS also has four variants corresponding to the four versions of GMX. The

variants that use GMX and GMXε are denoted by DVCBSF and DVCBSFε which lazily move

nodes with fD = LB from CwaitingD to CreadyD. Likewise, variants that use DGMXA (a

dynamic graph based on GMXA, i.e., based on the conditions of MEAPs) can be derived

by adapting the low-level expansion policy to GMXA and GMXAε . Specifically, as was

done for NBS, we modify the DVCBS expansion policy to immediately consider all nodes

for which fD(u) ≤ LB by changing the < condition in Line 2 of Algorithm 3 to be
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Figure G.3: An example for unbounded behavior of DVCBS

≤. This change also eliminates Lines 11–13, as we handle such nodes immediately in

Line 2. These variants are called DVCBSA and DVCBSAε.

Here too, DVCBSA can also be used to find a first solution, sometimes faster than

DVCBSF, as we demonstrate using Figure G.2. Initially, LB = 1. Since no nodes have

fD < LB, DGMX = DGMXA = {UF = {s}, VB = {g}, E = {〈s, g〉}}. Assume that both

DVCBSF and DVCBSA selected s for expansion and so {A, B, C} are added to waitingF.

Their minimal f -value is 2 (A and B) so LB = 2. There are no clusters in waitingF with

fF < LB, thus, {A,B} are moved to readyF and DGMX = DGMXA = {UF = {A, B}, VB =

{g}, E = {〈A, g〉, 〈B, g〉}}. Therefore, {g} is the MVC, and both algorithms expand

g and add {E, F, H, I, J} to waitingB. Next (LB is still 2), H is added to readyB and

since H is the MVC, it is expanded and K is added to waitingB. Now, {K} is the only

cluster in waitingB with fB ≤ LB. Since gB(K) = 2 and gminF = 1 ({A, B}) LB is

incremented to 3. At this point the algorithms diverge. DGMXA moves C to readyF

and {E, F, I, J, K} to readyB. Thus, DGMXA includes 3 clusters with fD ≤ LB = 3:

{A, B, C} with gF = 1 in readyF, and two clusters in readyB: {E, J, F, I} with gB = 1,

and {K} with gB = 2. Thus, DVCBSA expands cluster {A, B, C} (it is the MVC), then, D

is generated and expanded and DVCBSA terminates after expanding a total of 7 nodes

(s, g, H, A, B, C and D). By contrast, when LB = 3, DGMX contains only two clusters

with fD < LB = 3: {A, B} (with gF = 1) in readyF and {K} (with gF = 2) in readyB.

Thus, DVCBSF expands K (node C, as well as {E, J, F, I} are added to readyD, with

fD = LB = 3). Then it expands cluster {A, B, C}. Next it exapnds D and terminates,

after expanding a total of 8 nodes (s, g, H, K, A, B, C and D). Recall that NBSF expands

10 nodes and NBSA expands 8 on this example.
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Algorithm 3: DVCBS Expand a Level

1 while true do

2 while min f in CwaitingD < LB do

3 Move best cluster from CwaitingD to CreadyD

4 if CreadyD ∪ CwaitingD empty then

5 Terminate search - no solution was found

6 DGMX← BuildDGMX(CreadyD)

7 if DGMXis not empty then

8 MVC ← f indMVC(DGMX)

9 Choose and Expand a cluster from MVC of DGMX.

10 else

11 if CwaitingD. f ≤ LB then

12 Move best cluster from CwaitingD to CreadyD

13 else

14 return true

5.3 No Upper Bound Guarantees for DVCBS

The most important property of NBS is the 2× bound guarantee. While DVCBS outper-

forms NBS on average (see experiments below), DVCBS is not bounded in its worst case.

A synthetic example and its GMX demonstrate this in Figure G.3. The optimal path is

〈s, X, g〉 of cost k + (k− 1) = 2k− 1. Note that there is a longer path to X via the vi

nodes of cost 2k + 1. In this example, the MVC of GMX includes three nodes (g, X and Y

in the backward direction, all colored blue). We next show that DVCBS never expands

Y, and therefore has to expand at least k + 2 nodes — all connected to Y in GMX. To

expand Y, an algorithm needs to generate it by expanding g. If at any point DVCBS

chooses to expand g then DGMX will have two nodes in the backward side ({X, Y})

and a single node in the forward side (s or one of the Vi nodes). Thus, the MVC of

DGMX is always in the forward direction (choosing the Vi node), and DVCBS has to

expand all of s, V1, . . . , Vk−1 before converging to the size k + 1 VC of GMX. Otherwise,

if g is never chosen for expansion, DVCBS always chooses to expand nodes in the for-
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ward direction and it has to expand k + 2 nodes (s, X and all of the Vis) in order to

find a VC. In both cases, DVCBS expands more than k nodes. Since k can be arbitrarily

large, DVCBS is not bounded by a constant factor of the MVC.
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Domain Heuristic Algorithm

base-case ε-case

VC: GMX first all: GMXA VC: GMXε first all: GMXAε

14

Pancake

GAP

A* 32 (1.22) 57 941 (1.17) 32 (1.23) 57 941 (1.24)

NBSF 49 (1.88) 163 1,338 (1.67) 47 (1.83) 147 1,224 (1.61)

NBSA 44 (1.70) 258 1,106 (1.38) 41 (1.57) 310 932 (1.23)

DVCBSF 31 (1.18) 106 880 (1.10) 30 (1.14) 121 832 (1.09)

DVCBSA 32 (1.24) 191 901 (1.12) 31 (1.18) 284 793 (1.04)

GAP-1

A* 6,410 (1.39) 6,412 81,705 (1.56) 6,404 (1.73) 6,416 81,694 (2.11)

NBSF 7,184 (1.55) 7,226 80,192 (1.53) 5,870 (1.59) 5,915 62,374 (1.61)

NBSA 5,656 (1.22) 5,705 61,699 (1.18) 4,332 (1.17) 4,527 45,746 (1.18)

DVCBSF 5,319 (1.15) 5,341 61,278 (1.17) 4,321 (1.17) 4,344 45,206 (1.17)

DVCBSA 4,818 (1.04) 4,886 52,747 (1.01) 3,750 (1.01) 9,955 38,819 (1.00)

GAP-2

A* 322,299 (2.65) 322,378 2,659,657 (3.33) 322,099 (4.15) 322,938 2,659,326 (5.61)

NBSF 208,648 (1.71) 209,723 1,393,062 (1.74) 137,295 (1.77) 137,719 842,947 (1.78)

NBSA 151,616 (1.24) 152,046 991,354 (1.24) 96,774 (1.25) 99,773 614,320 (1.30)

DVCBSF 141,111 (1.16) 141,669 864,611 (1.08) 86,292 (1.11) 87,012 493,288 (1.04)

DVCBSA 122,054 (1.00) 122,587 800,105 (1.00) 77,595 (1.00) 168,176 474,315 (1.00)

15

Puzzle
MD

NBSF 13,542,536 (N/A) 13,587,955 28,117,879 (N/A) 12,709,517 (N/A) 12,748,107 26,162,236 (N/A)

NBSA 12,696,359 (N/A) 12,817,989 24,649,233 (N/A) 11,739,393 (N/A) 12,556,299 22,648,690 (N/A)

DVCBSF 11,863,100 (N/A) 11,940,791 25,717,691 (N/A) 11,589,837 (N/A) 11,669,720 24,088,398 (N/A)

DVCBSA 11,253,941 (N/A) 11,449,406 23,276,239 (N/A) 10,659,744 (N/A) 11,933,791 21,619,261 (N/A)

Grids

DAO
Octile

A* 5,322 (1.25) 5,406 5,758 (1.20) 5,322 (1.25) 5,406 5,758 (1.20)

NBSF 6,569 (1.54) 6,686 6,952 (1.45) 6,561 (1.54) 6,677 6,942 (1.44)

NBSA 6,555 (1.54) 6,888 6,932 (1.44) 6,547 (1.53) 6,880 6,919 (1.44)

DVCBSF 5,158 (1.21) 5,546 5,594 (1.16) 5,158 (1.21) 5,545 5,593 (1.16)

DVCBSA 5,154 (1.21) 5,547 5,590 (1.16) 5,152 (1.21) 5,546 5,586 (1.16)

TOH4

10+2

A* 276,081 (2.25) 276,089 353,130 (2.28) 276,081 (2.25) 276,089 353,130 (2.28)

NBSF 234,165 (1.91) 234,165 291,195 (1.88) 232,509 (1.90) 232,509 288,177 (1.86)

NBSA 232,268 (1.89) 232,268 288,583 (1.86) 230,108 (1.88) 230,108 285,073 (1.84)

DVCBSF 225,910 (1.84) 225,910 273,210 (1.76) 224,233 (1.83) 224,249 270,715 (1.74)

DVCBSA 218,820 (1.78) 218,820 280,800 (1.81) 217,247 (1.77) 219,022 278,286 (1.79)

6+6

A* 3,239,287 (4.75) 3,268,093 3,674,518 (4.89) 3,239,287 (5.19) 3,268,093 3,674,518 (5.34)

NBSF 731,446 (1.07) 731,522 796,289 (1.06) 663,136 (1.06) 681,995 732,638 (1.07)

NBSA 730,562 (1.07) 730,597 795,564 (1.06) 662,424 (1.06) 681,989 732,303 (1.06)

DVCBSF 704,213 (1.03) 707,679 766,722 (1.02) 636,375 (1.02) 664,469 695,950 (1.01)

DVCBSA 690,389 (1.01) 691,159 757,484 (1.01) 627,983 (1.01) 660,555 690,348 (1.00)

Table G.1: Experimental results of average node expansions across domains
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6 Experimental Evaluation

We ran experiments on four domains: (1) 50 14-Pancake Puzzle instances with the

GAP heuristic (Helmert 2010). To get a range of heuristic strengths, we also used the

GAP-n heuristics (for n = 1 . . . 3) where the n smallest pancakes are left out of the

heuristic computation. (2) The standard 100 instances of the 15 Puzzle problem (Korf

1985) using the Manhattan Distance heuristic. (3) Grid-based pathfinding: 156 maps

from Dragon Age Origins (DAO) (Sturtevant 2012), each with different start and goal

points (a total of 3150 instances); (4) 50 instances of the 12-disk 4-peg Towers of Hanoi

(TOH4) problem with (10+2), (8+4) and (6+6) additive PDBs (Felner et al. 2004).

Table G.1 presents results averaged over all instances for a representative set of

the heuristics we used. The same trends were observed for other heuristics. The left

side of the table is for the base-case while the right side is for the ε-case. Four low-

level expansion policies were executed until all optimal solutions were found: NBSF,

NBSA, DVCBSF and DVCBSA. For comparison reasons we also added A∗ as a baseline.

We report the number of nodes expanded at three different points of the execution,

each in a different column, as follows. (1) The VC column presents the number of

nodes expanded until the algorithm reached a VC of the corresponding GMX. The

number reported in parenthesis is the ratio (i.e., the relative size) of the discovered VC

compared to an oracle (Shaham, Felner, Chen, et al. 2017), that built the entire GMX

(by running A∗ in both directions) and found its exact MVC. Numbers close to 1 indicate

nearly optimal VCs. Due to memory limits, some MVCs could not be computed (N/A).

(2) The first column shows the number of nodes expanded until the first solution was

found and verified. (3) The all column gives the number of nodes expanded until all

optimal solutions were found (i.e., exactly when a VC of GMXA/GMXAε is found). Here,

the ratio relative to the optimal MVC of GMXA/GMXAε is reported.

Runtime results are reported in Table G.2. The node expansion rates of all vari-

ants were similar, with very low variance. Therefore, we use the number of node

expansions as the measure in the following analysis of the results.

Previous research (Chen et al. 2017; Sturtevant and Felner 2018) reported that NBS

tends to outperform and is more robust than A∗ and other related Bi-HS algorithms

(e.g., MM). Table G.1 confirms that A∗ is not as robust as the LBF family. In some cases,
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e.g., the 15 puzzle, A∗ failed to solve all instances because memory was exhausted.

Except for cases where the heuristic is very good (where MVC might be unidirectional),

A∗’s performance is much worse than the LBF family in all three measures. See (Sha-

ham, Felner, Chen, et al. 2017) for a deeper study on the relation between A∗ and

MVC.

Since NBS has a 2x bound guarantee, any other algorithm will expand no fewer

than half the nodes of NBS, leaving little leeway. Yet, our new algorithms managed to

improve upon NBS and the following trends are evident. First, within the NBS family,

NBSA and NBSAε outperform NBSF and NBSFε, respectively, in terms of finding a VC of

GMX and of GMXA. Moreover, they found the first solution faster than NBSF/NBSFε in

all cases except GAP and DAO.

Second, both DVCBS variants always outperformed the NBS variants in all three

measures in the base-case, with DVCBSA almost always being best. In the ε-case,

DVCBSF outperformed NBSF in all three measures, while DVCBSA outperformed NBSA in

VC and all. We note that the VCs discovered by the DVCBS variants were often much

closer (e.g., GAP-1; 55% vs. 4%, a factor of 14) to being optimal compared to the VCs

discovered by the NBS variants. In fact, in some cases, with a weak heuristic, DVCBSA

managed to find the exact MVC(!) of GMX (a ratio of 1).

Finally, an interesting anomaly occurs with DVCBSAε. It was the fastest to reach

a VC of GMXε but was rarely the fastest to find a first solution; in such cases DVCBS

was best among all algorithms. For example, for GAP-2, DVCBSAε expanded 77, 595

nodes to find a VC of GMXε while DVCBS found a VC after 86, 292 expansions. However,

DVCBSAε expanded 90, 581 more nodes (totaling 168, 176) before discovering a first

solution, while DVCBSFε expanded only 720 additional nodes (totaling 87, 012). We

conjecture that the reason is that in the ε-case, the frontiers may not be connected (i.e.,

same node in both frontiers) when a VC is found, and DVCBSAε must perform many

additional node expansions before connecting the frontiers and finding a solution.

However, other algorithms seem to perform more expansions before finding a VC, but

they are able to connect the frontiers during this process. We intend to study this

behavior further in future work.

To summarize, DVCBSA is clearly the algorithm of choice (among all 4) when all

optimal solutions are needed. When only a first solution is needed, DVCBSA is the best
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Alg 14 Pancake 15 Puzzle Grids DAO TOH4

A∗ 92,697 N/A 1,821,205 380,325

NBSF 93,176 250,518 1,567,131 402,616

NBSA 98,868 233,166 1,604,500 408,415

DVCBSF 98,448 235,621 1,417,141 418,944

DVCBSA 86,339 259,756 1,457,497 460,368

Table G.2: Average node expansions per second

Domain BS∗ MMε DVCBSFε A∗

GAP-0 183 149 121 57

GAP-1 5,262 5,048 4,344 6,416

GAP-2 266,442 119,310 87,012 322,938

10+2 174,936 303,189 224,249 276,089

6+6 1,599,018 1,120,392 664,469 3,268,093

MD 12,001,024 13,162,312 11,669,720 N/A

Octile 6,200 7,396 5,545 5,406

Table G.3: Average expansions for first solution (ε-case)

in the base-case, while DVCBSFε is the best in ε-case. Both always outperform any of

the NBS variants, despite not having any theoretical guarantees.

We have also compared DVCBSFε (which is our best variant for finding a first so-

lution in the ε-case) to A∗ as well as to MMε (Holte et al. 2017) and BS∗ (Kwa 1989)

which are benchmark Bi-HS algorithms. Table G.3 presents the average number of

node expansions for finding a first solution in the ε-case. As can be seen, DVCBSFε

tends to outperform all others, and is certainly the most robust to weaker heuristic.

7 Conclusions and Future Research

We have enriched the family of non-parametric Bi-HS algorithms as well as the fam-

ily of GMX graphs while also focusing on the problem of finding all optimal solutions.

We have shown that our new algorithms outperform existing ones. We aim to look

deeper in these directions in the future, and study additional variants and their rela-

tive performance.
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Abstract

Recent research on bidirectional search describes anomalies, or cases in which improved heuris-

tics lead to more node expansions. Aiming to avoid such anomalies, this paper characterizes

desirable properties for bidirectional search algorithms, and studies conditions for obtaining

these properties. The characterization is based on a recently developed theory for bidirectional

search, which has formulated conditions on pairs of nodes such that at least one node from

every pair meeting these conditions must be expanded. Moreover, based on this must-expand-

pairs theory, we introduce a method for enhancing heuristics by propagating lower bounds

(lb-propagation) between frontiers. This lb-propagation can bestow the desirable properties on

some existing algorithms (e.g., the MM family) while avoiding the above anomaly altogether.

Empirical results show that lb-propagation reduces the number of node expansions in many

cases.

1 Introduction

Bidirectional heuristic search (Bi-HS) algorithms interleave two separate searches: a

search forward from start, and a search backward from goal. Recently, a new line

of research into Bi-HS was spawned. Eckerle et al. 2017 defined three conditions on

the node expansions required by Bi-HS algorithms to guarantee solution optimality.

Following work reformulated these conditions as a must-expand graph (GMX). It was

shown that the Minimum Vertex Cover (MVC) of GMX corresponds to the minimal num-

ber of expansions required to prove optimality (Chen et al. 2017). Finally, a number of

algorithms were introduced. NBS (Chen et al. 2017) and DVCBS (Shperberg et al. 2019)

are non-parametric GMX-based Bi-HS algorithms that aim to find a vertex cover of

GMX quickly, but in different ways. Fractional MM (fMM(p)) (Shaham, Felner, Chen, et

al. 2017) is a parametric algorithm that generalizes the MM algorithm (Holte et al. 2017)

by controlling the fraction p of the optimal path at which the forward and backward

frontiers meet. Another parametric algorithm, GBFHS (Barley et al. 2018), iteratively

increases the depth of the search by using a split function to determine how deep to

search on each side at each iteration.

Holte et al. 2017 observed an anomaly where improving a heuristic caused the
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MM algorithm to expand more nodes. Aiming to generalize this anomaly beyond MM,

Barley et al. 2018 defined that an algorithm is well-behaved if using a better heuristic

will never hurt its performance; otherwise, it is ill-behaved. In this paper we expand

this line of work on Bi-HS in several ways.

First, we study and develop desirable properties for Bi-HS algorithms by re-formalizing

the well-behaved property and providing a definition which hs even more general than

that of Barley et al. 2018. We also introduce the reasonable property which guarantees

that an algorithm will never expand nodes if the lower-bound associated with them

is greater than the current global lower bound (LB) on the optimal solution. We then

introduce and prove sufficient conditions required to fulfill each property.

Second, building on the conditions of Eckerle et al. 2017, we introduce lb-propagation,

a method for propagating the best lower-bound between the two search frontiers,

thereby improving heuristics and the f -values in each frontier. lb-propagation can be

used on top of any Bi-HS algorithm; it is already used implicitly in GMX-based algo-

rithms such as NBS and DVCBS. We show that lb-propagation causes the MM family to

become well-behaved and reasonable, thereby avoiding the anomaly, although some

algorithms, such as BS∗, cannot be fixed in this way.

Third, we perform a study on a number of algorithms, characterizing those that

are inherently well-behaved and reasonable, as well as whether or not lb-propagation

bestows these properties on the algorithms. Finally, we show experimentally that lb-

propagation reduces the number of node expansions for non-GMX-based algorithms.

1.1 Definitions and Background

A shortest-path problem, P, is defined as a tuple (G = {V, E}, start, goal) in which G

is a graph and start, goal ∈ V. The aim of such problems is to find the least-cost path

between start and goal. Let d(x, y) denote the shortest distance between x and y and

let C∗ = d(start, goal). In some cases, the minimal edge-cost is known beforehand;

this minimal cost is denoted by ε.

Most Bi-HS algorithms maintain two open lists: OpenF for the forward search

and OpenB for the backward search. There are two types of heuristics in bidirectional

search. Front-to-front heuristics (Champeaux 1983; Champeaux and Sint 1977) estimate

the distance between any two nodes in the search space, while front-to-end heuristics
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(Kaindl and Kainz 1997) estimate the distance from any node and the start or goal.

Front-to-front heuristics may be more computationally expensive, and efficient data

structures for front-to-frond algorithms do not exist. This paper only considers front-

to-end heuristics.

Given a direction D (either forward or backward) We use fD, gD and hD to indicate

f -, g-, and h-values in direction D. In addition, f minD and gminD represent the

minimal f - and g-values in that direction.

The forward heuristic hF is admissible iff hF(u) ≤ d(u, g) for every state u ∈ G and

is consistent iff hF(u) ≤ d(u, u′) + hF(u′) for all u, u′ ∈ G. The backward heuristic hB

is defined analogously. A pair of forward and backward heuristic functions is bi-

admissible if both heuristics are admissible. Likewise, such a pair is bi-consistent if

both heuristics are consistent. A search algorithm is admissible if it is guaranteed to

find an optimal solution whenever its heuristic is admissible. Finally, a heuristic h1

is said to dominate another heuristic h2 if and only if for every node n ∈ G, h1(n) ≥

h2(n) (Russell and Norvig 2016). We limit the discussion in this paper to admissible

deterministic black-box expansion-based algorithms (called DXBB by Eckerle et al.

2017) used with bi-admissible and bi-consistent heuristics.

1.2 Fractional MM

We use the MM family of algorithms as a case study, therefore briefly describe them

next. MM is a Bi-HS algorithm that meets in the middle (Holte et al. 2017), i.e. it is guar-

anteed to never expand a node whose g-value exceeds C∗/2. Fractional MM (fMM(p))

is a generalization of MM that never expands a node in the forward direction whose

g-value exceeds C∗/p, and never expands a node in the backward direction whose

g-value exceeds C∗/(1− p). For a given fraction 0 < p < 1, fMM(p) chooses a node

for expansion according to the following priority functions:

prF(u) = max{gF(u) + hF(u),
gF(u)

p + ε}

prB(v) = max{gB(v) + hB(v),
gB(v)
1−p + ε}

A node with minimal priority in either direction is chosen for expansion.1 fMM

1For p = 1 or p = 0 fMM runs forward- or backward A*. Additionally, the original definition of fMM

and MM did not include ε, which was introduced in later versions of the algorithms: MMε (Sharon et al.

2016) and fMMε (Shaham, Felner, Sturtevant, et al. 2018).
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terminates when one of the following conditions is met:

• One of OpenF or OpenB is empty.

• There exists a node v in both open lists with C = gF(v) + gB(v) s.t. either:

– f minF ≥ C;

– f minB ≥ C;

– gminF + gminB + ε ≥ C; or

– min{ min
u∈OpenF

prF(u), min
v∈OpenB

prB(v)} ≥ C.

Note that MM is a special case of fMM(p) with p = 1/2.

Shaham, Felner, Chen, et al. 2017 showed that for every problem instance, there

exists a fraction p∗ such that fMM(p∗) is optimally efficient and will expand the min-

imal number of nodes required to guarantee the optimality of its solution. However,

p∗ is not known a priori since it depends on the search-tree structure and the value of

C∗.

1.3 GBFHS

GBFHS (general breadth-first heuristic search) (Barley et al. 2018) is a prominent bidi-

rectional heuristic search algorithm that iteratively increases the depth of the search.

For each depth, denoted by fLim, GBFHS uses a pre-defined split function (a "param-

eter" of the algorithm) that determines how deep to search on each side. The split

function splits fLim to gLimF and gLimB, such that fLim = gLimF + gLimB + ε− 1 (in

unit edge cost domains ε− 1 = 0). For a given iteration (i.e., a given value of fLim)

all nodes with fD(n) ≤ fLim and gD(n) < gLimD are called expandable. GBFHS expands

all expandable nodes from both directions. GBFHS terminates as soon as a solution with

cost = fLim is found. Specifically, GBFHS stops when there exists a node n in both

open lists with gF(n) + gB(n) ≤ fLim. If a solution is not found after expanding all

expandable nodes, fLim is incremented (adds 1), and as a result the split function up-

dates gLimF or gLimB (such that fLim = gLimF + gLimB + ε− 1). Then, a new iteration

begins. The split function must update the g-limits (gLimF and gLimB) in a consistent

way, i.e., the values it returns must be larger than or equal to the previous values. This
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means that when fLim is incremented then one of gLimF and gLimB is incremented

too.

GBFHS was shown to have some desirable properties when given a problem in-

stance from IAD: (1) it returns an optimal solution when the edges are non-negative

integers; (2) in unit cost domains, the first solution GBFHS finds is guaranteed to be

optimal; (3) Its frontiers can be made to meet anywhere using a proper split function;

and (4) it is both well-behaved and reasonable.

Since GBFHS is guaranteed to return an optimal solution only when the edge costs

are (non-negative) integers, we will assume such edge costs for the sake of the anal-

ysis. Nevertheless, we conjecture that GBFHS can be slightly modified in a way that

would guarantee optimal solutions for any non-negative edge costs, while retaining

all of its original properties. Investigating this conjecture is left for future work.

2 The Well-Behavedness Property

If h1 and h2 are consistent heuristics and h1(s) ≥ h2(s) for all non-goal nodes (i.e., h1

dominates h2), then every node expanded by A∗ using h1 will also be expanded by A∗

using h2 up to tie-breaking in the last f -layer (Holte 2010). Holte et al. 2017 describe

an anomaly that may occur in Bi-HS algorithms such that a similar property does

not hold. An example is provided in which MM using a global zero-heuristic (denoted

henceforth by h0 and the MM variant using it by MM0) expands a subset of nodes that

are expanded by MM that uses a stronger heuristic. Barley et al. 2018 also refer to

the above anomaly, calling algorithms well-behaved if switching to a stronger heuristic

does not lead to the expansion of any additional nodes, and ill-behaved otherwise.

Well-behavedness has not been formally defined in a general manner; Holte et al.

2017 did not formally define the anomaly and Barley et al. 2018 defined it using terms

that are specific to the GBFHS algorithm. We introduce a general definition of the well-

behavedness property below and show that the anomaly results from a combination of

(1) different tie-breaking, and (2) not using the theoretical lower-bound conditions for

guiding the expansion process.

Many heuristic search algorithms do not fully specify which single node to ex-

pand at any given point in the search. For example, A∗ may choose any node in
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Open with a minimal f -value, and fMM can choose any node in either open list with

minimal priority. Instead, these algorithms specify a set of nodes from the open lists

(denoted henceforth by allowable-set) from which the next node must be expanded. An

additional tie-breaking scheme is used to select a single node from the allowable-set.

Tie-breaking is often specific to a given implementation, and in most cases is not part

of the published algorithm definition. For example, A∗ must expand nodes with the

smallest f -value. There are many possible tie-breaking rules to decide how to break

ties among nodes with the same f -value (e.g., smallest h or smallest g, generation

order etc.). However, all of these tie-breaking functions are low-level details of A∗

implementations.

We use Ah(I, t) to denote the sequence of nodes expanded by running algorithm

A using heuristic h on problem instance I with a tie-breaking function t, and by

S(Ah(I, t)) the (unordered) set of nodes induced by the expansion performed by

Ah(I, t).

Definition H.1

Let h1, h2 be bi-admissible bi-consistent heuristics, such that h1 dominates h2. Al-

gorithm A is said to be well-behaved if for every tie-breaking policy t and problem

instance I, there exists a tie-breaking policy t′ such that S(Ah1(I, t′)) ⊆ S(Ah2(I, t)).

This is a general definition that can be used with any Bi-HS algorithm. To date,

only A∗ and GBFHS have been proven to be well-behaved, while MM has been shown to

be ill-behaved (see below). This property has not been studied in other algorithms.

We define conditions that enable the classification of algorithm as either well- or ill-

behaved, covering a wider family of algorithms.

2.1 Example of the Anomaly for fMM

In order to explore algorithms that are ill-behaved, we borrow an example from Holte

et al. 2017, depicted in Figure H.1. In this example ε = 1 and the values inside nodes

are h-values in the direction indicated by the arrow. We henceforth denote this bi-

consistent heuristic by h f ig. MM0 expands nodes by their g-value. Thus, MM0 starts by

expanding start and goal (priority of 0), after which nodes S1, G1, A, and C have a

priority of 1. There exists a tie-breaking policy t in which MM0 expands A, C, and S1

and then terminates, since it finds a solution of cost 4 and gminF + gminB + ε = 4.
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Figure H.1: An example in which the anomaly manifests

In contrast, MM must expand both S1 and G1 after expanding start and goal before

expanding A and C, since S1 and G1 have a priority of g + h = 2g + ε = 3, while

A and C have a priority of 4 (g + h = 4). Consequently, there exists a tie-breaking

policy t for MM0 such that for every a tie-breaking policy t′ the set of nodes expanded

by running MM on this instance using t′ is not a subset of the set of nodes expanded

by MM0 using t. Thus, MM is ill-behaved.

To understand why MM is ill-behaved, consider the situation after MM expanded

start, goal, and S1. At this point, OpenF contains S2 (gF = 2, hF = 1, prF = 5), and

A (gF = 1, hF = 3, prF = 4); OpenB contains G1 (gB = 1, hB = 2, prB = 3), and C

(gB = 1, hB = 3, prB = 4). Thus, if the optimal solution goes through G1, it must go

through either S2 or A. If the optimal path goes through G1 and S2, its cost would

be at least gF(S2) + gB(G1) + ε = 4. Similarly, if the optimal path goes through G1

and A then its cost would be at least fF(A) = 4. Hence, every path that goes through

G1 must have a cost of at least 4. The priority of G1 (prF(G1) = 3) doesn’t reflect

knowledge available in the search, which causes MM to be ill-behaved. This observation

suggests that the sufficient conditions for node expansions (Eckerle et al. 2017) may

be connected to whether an algorithm is well-behaved.

2.2 Guaranteeing Solution Optimality

Unidirectional search algorithms must expand all nodes n with f (n) < C∗ in order to

guarantee the optimality of solutions (Dechter and Pearl 1985).
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Eckerle et al. 2017 generalized this to Bi-HS by examining pairs of nodes 〈u, v〉

such that u ∈ OpenF and v ∈ OpenB. Let ε be the minimal edge cost in G2. If u and v

meet the following conditions, then every algorithm must expand at least one of u or

v in order to ensure that there is no path from s to g passing through u and v of cost

< C∗.

1. fF(u) < C∗

2. fB(v) < C∗

3. gF(u) + gB(v) + ε < C∗

Definition H.2

For each pair of nodes (u, v) let lb(u, v) = max{ fF(u), fB(v), gF(u) + gB(v) + ε}

In Bi-HS, a pair of nodes 〈u, v〉 is called a must-expand pair (MEP) if lb(u, v) < C∗.

The MEP definition is equivalent to Eckerle’s conditions; for each MEP only one of u or

v must be expanded. In the special case of unidirectional search, algorithms expand

all the nodes with fF < C∗, which is equivalent to expanding the forward node of

every MEP. Bi-HS algorithms may expand nodes from either side, potentially covering

all the MEPs with fewer expansions.

However, to address the ill-behavedness property we wish to bound the minimal

solution cost that can pass through each node u in our open lists. To do so, we use

the bound lb(u, v) and apply it to every node v on the opposite frontier and take the

minimum among these values. Formally, for every node u in OpenD let

lb(u) = min
v∈openD

{lb(u, v)}

where D denotes the opposite direction from D. Then, lb(u) is a lower bound on the

cost of any solution that passes through u. Finally, we define the global lower bound

LB to be the minimal lb(u) among all nodes. This is identical to the minimal lb(u, v)

among all pairs. LB was used in the high-level pseudocode (described below) of the

NBS and DVCBS algorithms. Note that the search begins with LB = lb(start, goal), after

which LB increases iteratively until LB = C∗. We can now use these definitions to

show whether a family of algorithms is well-behaved.

2Strictly speaking the ε term was added by Shaham, Felner, Sturtevant, et al. 2018 as a generalization

of the inequalities, since ε = 0 is always a lower-bound to edge cost.
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2.3 Conditions for Being Well-Behaved

We first introduce three sufficient conditions for an admissible Bi-HS algorithm A to

be well-behaved:

Condition C1: Algorithm A chooses a node u for expansion only if lb(u) = LB.

Condition C2: Algorithm A terminates as soon as a solution with cost C ≤ LB is

found.

Condition C3: The allowable-set of algorithm A contains every node u with lb(u) =

LB.

Theorem H.1

An admissible Bi-HS algorithm A that satisfies conditions C1, C2, and C3 is well-

behaved.

Proof. Let h1, h2 be bi-admissible bi-consistent heuristics, s.t. h1 dominates h2, and let

t2 be an arbitrary tie-breaking policy. We will show that there exists a tie-breaking

policy t1 s.t. S1 = S(Ah1(I, t1)) ⊆ S(Ah2(I, t2)) = S2.

To do this, we examine the execution of Ah1(I, t1 = t2) and show how to modify

t1 to make S1 ⊆ S2. Let n be the first node expanded in the trace of the execution s.t.

n /∈ S2 (if no such node exists then S1 ⊆ S2 and we are done). In addition, let D be

the direction in which n was expanded. We now have two cases:

Case 1: There exists a node n′ in one of the frontiers s.t. lb(n′) = lb(n) = LB and

n′ ∈ S2. given C3, we can modify t1 to choose n′ instead of n.

Case 2: All of the nodes n′ in the frontiers with lb(n′) = lb(n) = LB are not in S2. We

will show that this case is not possible. Note that since n was chosen for expansion,

all other nodes m in the frontiers have lb(m) ≥ lb(n) = LB. Let v be a node in OpenD

s.t. lb(n) = lb(n, v). Since lb(v) ≤ lb(n, v) and lb(v) ≥ lb(n) then lb(n) = lb(v),

and therefore v /∈ S2. Since both n and v are in Open using h1 when n is chosen

for expansion, and because n is the first to not be in S2, then all other nodes that

were expanded by h1 were expanded by h2. Thus, at some point in Ah2(I, t2), both n

and v are in Open with a g-value less than or equal to that found in Ah1(I, t1). We

can therefore refer to lb(n, v) in Ah2(I, t2). Henceforth, lbi(n, v) refers to the value

lb(n, v) in Ahi(I, ti). Since h1 dominates h2, and since the g-values cannot be larger
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when using h2, lb2(n, v) ≤ lb1(n, v). We proceed by examining the possible values of

lb1(n, v), and show that any value leads to a contradiction. There are three possible

values of lb1(n, v) to consider:

(i) If lb1(n, v) < C∗, then lb2(n, v) < C∗ as well. Therefore, 〈n, v〉 is an MEP and any

admissible algorithm must expand one of them. The fact that n, v /∈ S2 contradicts the

admissibility of A.

(ii) If lb1(n, v) = C∗, then since Ah1(I, t1) expanded n, it did not yet find any solution

of cost C∗. Since LB is a lower-bound on the optimal solution, a solution with cost C∗

must pass through some node m with lb(m) = lb(n) = C∗ that was not yet expanded.

Under the assumption of case 2, there are no nodes m with lb(m) = lb(n) = LB in

one of the frontiers that is also in S2. Therefore, Ah2(I, t2) will never find a solution

of cost C∗. This is a contradiction to the assumption that A is admissible.

(iii) If lb1(n, v) > C∗, then since Ah1(I, t1) expanded n and A satisfies C2, it did not

find any solution of cost C∗. Additionally, when n was chosen for expansion, the lb

between every pair of nodes in the open lists is greater than C∗. Thus, a solution of

cost C∗ does not exist by contradiction to the definition of C∗.

These conditions are sufficient, but not necessary. In the next section we explore

another desirable property.

3 The Reasonableness Property

While being well-behaved is an interesting property, some well-behaved algorithms

do not behave sensibly. For example, an algorithm that completely ignores heuristic

values and expands nodes according to their g-value is clearly well-behaved because

a stronger heuristic will not change the behavior of the algorithm. However, such an

algorithm might expand nodes n with f (n) > C∗ whose g(n) ≤ C∗. Gilon et al. 2016

denoted algorithms as reasonable if they have a best-first structure (i.e. an open list

and an expansion rule), and they prune any node n with f (n) > C, where C an upper

bound on the cost. We generalize this notion as follows:

Definition H.3

A Bi-HS algorithm is reasonable if for every tie-breaking policy it does not expand a

node v if either lb(v) > C∗, or if lb(v) = C∗ and a solution of cost C∗ has already been
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found.

Note that since f (n) ≤ lb(n) and C∗ ≤ C, the redefinition of the reasonable prop-

erty is tighter than the original definition of Gilon et al. 2016.

Theorem H.2

Any admissible Algorithm A that satisfies C1 and C2 is reasonable.

Proof. Let A be an algorithm that always expands a node u with lb(u) = LB and

terminates as soon as a solution with a cost c ≤ LB is found. Assume by contradic-

tion that lb(u) > C∗. Since lb(u) is minimal (lb(u) = LB) then every solution that

passes through every node in the open lists has a cost > C∗. Since C2 dictates that

A terminates when a solution with a cost c = LB is found, no solution with cost C∗

could have been found. Therefore, there is no possible solution with a cost of C∗, by

contradiction to the definition of C∗.

To summarize both theorems, an algorithm that satisfies conditions C1 and C2 is

reasonable, and one that also satisfies C3 is well-behaved. In both cases, the conditions

are sufficient but not necessary.

4 Improving Heuristics by lb-propagation

We next introduce several methods that improve the heuristic value of a node by

utilizing information gathered during the search in both frontiers. The strongest

method which propagates lb-values causes some ill-behaved algorithms to become

well-behaved (e.g., the MM family). In addition, algorithms that satisfy conditions C1

and C2 with respect to f instead of lb which use this method become reasonable.

Note that this improvement is achieved by modifying only the heuristic, without any

other changes to the algorithms.

4.1 Propagating g- and f -values

A simple observation on the nature of bidirectional search yields that the minimum

gD-value with the addition of ε is an admissible heuristic for any node in OpenD. Fur-

thermore, we can propagate the minimal f -value from the opposite frontier because
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it is a lower bound on any possible solution. Formally, let gminD = min
v∈openD

{g(v)} and

let f minD = min
v∈openD

{ fD(v)}. We can improve the heuristic of node n in direction D to

be:

h′D(n) = max{hD(n), gminD + ε, f minD − gD(n)}

h′ clearly dominates h and is easy to implement. One only needs to keep track of

gminD and f minD for both directions. Nevertheless, h′ does not solve the anomaly;

MM using h′ on Figure H.1 behaves identically to MM using the original heuristic, as

described in Section 2.1

4.2 lb-propagation heuristic

The next heuristic exploits knowledge from lb-values. Let hlb(n) = lb(n) − gD(n)

denote the new heuristic function for nodes in direction D. Consider the following

key observations: (1) hlb is a dynamic heuristic that takes into account information

generated by the search in the opposite direction. Therefore, its value for a node may

change as the search proceeds. (2) Since lb(n) ≥ fD(n), hlb(n) ≥ hD(n) for every node

in both directions. (3) hlb maintains the bi-consistency and bi-admissibility properties

of h.

The heuristic hlb dominates h′ because h′ looks at the global values of gminD and

f minD, while hlb considers each pair of nodes in isolation. Despite the fact that hlb

dominates h′, using lb-propagation depends on the ability to efficiently compute the

lb of nodes in Open. This task is certainly more difficult than applying the other

propagation, which simply requires maintaining the minimal f - and g-values in each

direction. In some algorithms the lb-propagation can be applied to a limited subset

of Open, possibly enabling an efficient implementation (similar to NBS). In other

cases, the lb of every node is required. This leads to a potentially less a efficient

implementation, using g-h buckets (Burns et al. 2012); this solution would work if the

number of possible g-values (and therefore h-values) is relatively small, which is the

case in many common domains.

An important property of hlb is that it changes the f -values of nodes to be their

lb-value, and therefore makes some existing algorithms well-behaved and reasonable

as we show in the next section.
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Algorithm
Without lb-p With lb-p

R WB R WB

BHPA × X X X

BS∗ × × X ×

fMM × × X X

GBFSH X X X X

NBS, DVCBS X × X ×

Table H.1: Algorithm properties summary. R columns denote reasonableness, WB columns denote

well-behavedness.

5 Classification of Existing Algorithms

As mentioned, lb-propagation makes the f -values of nodes identical to their lb-values.

Therefore, any algorithm which chooses to expand nodes based on f -values and ap-

plies lb-propagation will now satisfy condition C1. However, in order to be provably

reasonable it should also satisfy condition C2, and to be well-behaved, condition C3 is

also needed. In this section, we review several Bi-HS algorithms and analyze how lb-

propagation affects them. For any algorithm A we henceforth denote by Alb a version

of A that applies lb-propagation. Table H.1 summarizes the results of this section, for

algorithms with and without lb-propagation (lb-p).

5.1 BHPA

We begin with BHPA (Pohl 1971), a simple algorithm that first selects a direction and

chooses to expand a node with minimal f -value in that direction. BHPA terminates

when the minimal f -value is greater than or equal to C∗.

Lemma H.1

BHPA is well-behaved.

Proof. Let I be a problem instance, h1 and h2 be heuristics that are bi-admissible and

bi-consistent on I s.t. h1 dominates h2, and let t2 be a tie-breaking policy. Let S2

denote S(BHPAh2(I, t2)) and let S1 denote S(BHPAh1(I, t1 = t2)). Let u be the first

node expanded in the trace of BHPAh1(I, t1) s.t. u /∈ S2. If u does not exist, we are

done. Otherwise, we want to fix t1. If there exists a node n ∈ S2 that has a minimal
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f -value in either direction of BHPAh1(I, t1) when u was selected for expansion, we

can alter t1 to select n instead of u. Otherwise, there exists a node u′ in the opposite

direction of u with minimal f -value, and we could modify t1 to select u′ instead of

u for expansion. We know that for every node v, fD
h1(v) ≥ fD

h2(v), thus fD
h1(u) ≥

fD
h2(u) and fD

h1(u′) ≥ fD
h2(u′). Therefore, if fD

h1(u) < C∗ and fD
h1(u′) < C∗,

we know that fD
h2(u) < C∗ and fD

h2(u′) < C∗, hence S2 must contain either u or

u′, so that BHPAh2(I, t2) could terminate by contradiction to the fact that u, u′ /∈

S2. Otherwise, fD
h1(u) = C∗ or fD

h1(u′) = C∗. In this case, since BHPAh1(I, t1) is

admissible and must find an optimal solution, there must be some other node v ∈ S2

in the open lists when u was chosen for expansion s.t. fD
h1(v) = C∗ by contradiction

to the case assumption.

Lemma H.2

BHPA is unreasonable.

Proof. Consider the problem instance I in Figure H.1 assuming that hF(S3) = hB(G3) =

0. Since for all i ∈ {1, 2, 3}, fF(Si) = fB(Gi) = 3, while fF(A) = fB(C) = 4, run-

ning BHPAh f ig
on I with any tie-breaking policy must expand either {S1, S2, S3},

{G1, G2, G3}, or both, before being able to expand A or C. Furthermore, there ex-

ists a tie-breaking in which BHPAh f ig
expands start and goal followed by {S1, S2, S3}.

Since lb(S3) = gF(S3) + gB(C) + ε = 5 > C∗ = 4, BHPA is unreasonable.

Lemma H.3

BHPAlb is reasonable and well-behaved.

Proof. Since after the propagation the f -value of a node equals its lb, BHPAlb always

expands nodes with minimal lb (C1). In addition, BHPAlb terminate as soon as a

solution with a cost C ≤ f minD = LB is found (C2). Finally, the allowable-set of

BHPAlb contains all nodes with minimal lb since they all have the same f -value (C3).

5.2 BS∗

BS∗ (Kwa 1989) expands a node with a minimal f -value from the smallest open-list

(Pohl’s cardinality criterion (Pohl 1971)) and terminates when the minimal f -value is

greater than or equal to C∗. In addition, BS∗ trims nodes from the open lists if their

f -value is greater than or equal to costs of potential solutions that were already found.
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Figure H.2: BS∗ lb is not well-behaved

Lemma H.4

BS∗ and BS∗lb are ill-behaved.

Proof. Consider problem instance I in Figure H.2. Using the heuristic values written

inside the nodes, BS∗ starts by expanding start and goal in an unspecified order.

Nodes G1 and S2 get f -values of 2, and nodes S1 an f -value of 5. Since BS∗ has

already found a solution of cost 4, nodes S1 are trimmed from OpenF. At this point

OpenF contains only S2, while OpenB contains two nodes (G1). Thus, BS∗ is forced to

choose S2 for expansion before terminating.

Next, consider BS∗ using h0. The beginning of the search is similar: start and goal

in an unspecified order. Then all nodes of OpenF get an f -value of 1. Since no node

is trimmed, OpenF contains 3 nodes, while the OpenB contains 2 nodes. Thus, BS∗

expands the G1 nodes before terminating, without expanding S2.

While applying the propagation changes the f -value of nodes, the behaviour of

BS∗lb is identical to BS∗ on this example. Thus, both BS∗ and BS∗lb are ill-behaved. We

note that C3 is violated here because the allowable-set of BS∗lb is forced to contain

only one open list.

Lemma H.5

BS∗ is unreasonable.

Proof. The proof is similar to that of Lemma H.2. Consider the problem instance I in

Figure H.1 assuming that hF(S3) = hB(G3) = 0. Similar to the proof of Lemma H.2,

BS∗ will have to expand start,goal, {S1, S2, S3} and {G1, G2, G3} before expanding A

or C. Since lb(S3) = gF(S3) + gB(C) + ε = 5 > C∗ = 4, BS∗ is unreasonable.
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Lemma H.6

BS∗lb is reasonable.

Proof. Since after the propagation the f -value of a node equals its lb, BS∗lb always

expands nodes with minimal lb (C1). Finally, BS∗lb terminates as soon as a solution

with a cost c ≤ f minD = LB is found (C2). Therefore, both conditions are satisfied

and BS∗lb is reasonable.

5.3 fMM

We have already shown that fMM is ill-behaved in Section 2.1. We now show that fMM

is also unreasonable.

Lemma H.7

fMM is unreasonable.

Proof. Consider fMM(1/4) applied to the problem instance in Figure H.3. After ex-

panding start and goal, a solution of cost 11 is discovered, and LB = lb(S2, G2) =

gF(S2) + gB(G2) + ε = 12. Since pr(G2) = max{ fB(G2), 4
3 gB(G2)} = 10, G2 will be

expanded before termination, even though 12 = LB > C∗ = 11.

Lemma H.8

fMMlb always expands a node u with lb(u) = LB, hence it is reasonable.

Proof. Assume by contradiction that fMMlb chose a node u in direction D for expansion

s.t. lb(u′) 6= LB. Therefore, there exists a pair of nodes (u′, v′) s.t. u′ is in the OpenD, v′

is in OpenD and lb(u′) = lb(v′) = lb(u′, v′) = LB < lb(u). Using the lb-propagation,

we know that fD(u′) = lb(u′) = lb(u′, v′), and fD(v
′) = lb(v′) = lb(u′, v′). Therefore,

fD(u) = lb(u) > fD(u′). Likewise, fD(u) = lb(u) > fD(v
′).

fD(u) > fD(v
′) = fD(u′) = lb(u′) = lb(u′, v′)

≥ gD(u′) + gD(v
′) + ε

Since u was chosen for expansion, we know that prD(u) ≤ prD(u′) and prD(u) ≤

prD(v
′). Thus,

max( fD(u),
gD(u)

p
+ ε) ≤ max( fD(u′),

gD(u′)
p

+ ε)
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and

max( fD(u),
gD(u)

p
+ ε) ≤ max( fD(v

′),
gD(v

′)

1− p
+ ε)

Since fD(u) = lb(u) > lb(u′) = fD(u′) = lb(v′) = fD(v
′),

fD(u) ≤
gD(u′)

p
+ ε (H.1)

fD(u) ≤
gD(v′)
1− p

+ ε (H.2)

By summing inequality (H.1) multiplied by p with inequality (H.2) multiplied by

1− p, we get:

fD(u) = p fD(u) + (1− p) fD(u) ≤ gD(u′) + gD(v
′) + ε

In contradiction to: fD(u) > gD(u′) + gD(v
′) + ε above.

Lemma H.9

fMMlb (with lb-propagation) is well-behaved.

Proof. Here we cannot use Theorem H.1 directly since the allowable-set of fMMlb does

not include every node u with lb(u) = LB, as some of these nodes might have g-

values that raise their priority. Nonetheless, we show that fMMlb using lb-propagation

is in fact well-behaved, using a slight modification to Theorem H.1. In Lemma H.8

we showed that fMMlb only expands nodes with minimal lb. In addition, fMMlb ter-

minates when the lowest f -value is ≥ C∗. Since the f -value of nodes after applying

lb-propagation is equal their lb-value, fMMlb stops when LB ≥ C∗. Thus, C1 and C3

are satisfied. However, C2 is violated by the priority mechanism of fMM, since nodes

with the same lb-value might have different priorities due to their g-values and direc-

tion. For example, if there is only one node in OpenF with fF = 3,gF = 1, and only

one node in OpenB with fB = 3,gB = 2, fMM will give lower priority to the node in
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OpenF, based on his g-value (priority of 3 versus a priority of 5). Nonetheless, we will

show that fMMlb is still well-behaved. The problem arises since the first case of of the

proof of Theorem H.1 reduces to nodes n′ with the lb(n′) = lb(n) and pr(n′) = pr(n).

Therefore, nodes n′ with lb(n′) = lb(n) and pr(n′) 6= pr(n) are part of the second

case of the proof, which does not cover them. In that case, we considered some v s.t.

lb(n) = lb(v) = lb(n, v). Following that, it was clear that v /∈ S2. Nonetheless, in

our case, v could have been in S2 if it had a different priority than n when fMMlb was

running using h1. Since fMMlb expands nodes with minimal priority, pr(v) > pr(n).

The priority of v could have been determined by one of the following options:

Case 1: fD(v) = lb(v) = pr(v). However, lb(u) ≤ pr(u) and lb(v) = lb(u). Therefore,

pr(v) ≤ pr(u), by contradiction to the assumption that pr(v) > pr(u).

Case 2:
gD(v)
1−p = pr(v). Since fD2(v) ≤ fD1(v) and fD(v) ≤

gD(v)
1−p = pr(v), we know

that the pr(v) using h2 is less or equal than pr(v) using h1. In addition, the priority

of node n (and any of its ancestors) when running using h1 must be strictly less than

pr(v), by contradiction to the fact that v was already chosen for expansion.

Therefore, we can conclude that v is still not in S2 and the proof of Theorem H.1

is generalized to fMM as well.

5.4 NBS and DVCBS

NBS (Chen et al. 2017) and DVCBS (Shperberg et al. 2019) are two prominent Bi-HS

algorithms that choose nodes for expansion with minimal lb. At any point in the

search, NBS chooses a pair of nodes with minimal lb and expands them both. DVCBS

expands nodes from a subset of those with minimal lb, determined by maintaining a

dynamic version of the GMX (denoted by DGMX) and finding its MVC. Both algorithms

terminate as soon as a solution with a cost c ≤ LB is found. Since the expansion policy

and termination condition of both algorithm already consider LB, their properties

remain unaffected by lb-propagation.

Clearly, NBS and DVCBS satisfy conditions C1, and C2 and are therefore reason-

able (up to a single additional expansion). However as previously mentioned, the

allowable-set of DVCBS includes only nodes that make up the MVC of DGMX, violating

C3. In addition, once NBS has chosen a pair (u, v) for expansion, it is committed to

expanding both nodes. Therefore, after expanding u, any node u′ in the same direc-
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Figure H.4: NBS is not well-behaved

tion of u s.t. lb(u′) = lb(u) = lb(v) = LB is not in the allowable set of NBS until after

expanding v, in violation of condition C3.

Lemma H.10

NBS is ill-behaved.

Proof. Consider the problem instance of Figure H.4.3 NBS using h0 will start by ex-

panding start and goal. Afterwards, X and A are added to OpenF, and C is added

to OpenB. Since gF(x) = fF(x) = 12, lb(X, C) = 12, while lb(A, C) = 9. Therefore,

the pair (A, C) is chosen for expansion, after which a path of length 20 has been

discovered. Since lb(X, B) ≥ 20 and lb(B, B) ≥ 20, NBS terminates after expanding

start, A, C, and goal.

NBS using the heuristic in the nodes starts by expanding start and goal. Next, X

and A are added to OpenF, and C is added to OpenB. Since lb(A, C) = 20 (due to

fF(A)) and lb(X, C) = 19 (due to fB(C)). Therefore, NBS will expand the pair (X, C),

despite the fact that X was not expanded using a weaker heuristic.

Lemma H.11

DVCBS is ill-behaved.

Proof. Consider the problem instance of Figure H.2. DVCBS using the heuristic in the

nodes starts by expanding either start or goal since both of them are MVCs of DGMX.

If goal was chosen, start must be expanded, since it becomes the only MVC, followed

by S2 for a similar reason, after which DVCBS terminates since LB = 5 > 4 (the path

that was discovered from start to goal). Likewise, if start was chosen for expansion,

DVCBS will expand either S1 and terminate, or goal followed by S1. In both cases the

G1 nodes are never expanded. However, DVCBS using h0 must expand start and goal

in an unspecified order, followed by G1.
3This example is due to Robert Holte and Sandra Zilles
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5.5 GBFSH

GBFHS is an algorithm that iteratively increases the depth of the search ( f Lim). At each

depth, a pre-defined split function (parameter of the algorithm) is used that determines

how deep to search on each side at each iteration by splitting f Lim to gLimF and

gLimB s.t. f Lim = gLimF + gLimB + ε− 1 . At every iteration, GBFHS considers nodes

for expansion in direction D with f ≤ f Lim and g < gLimD. GBFHS terminates when

as soon as a solution with a cost equals to f Lim is found.

GBFHS was proved to be well-behaved.4 We show that GBFHS is reasonable by

showing that it expands only nodes with minimal lb, even without applying lb-

propagation.

Lemma H.12

GBFHS is reasonable.

Proof. Since GBFHS considers nodes for expansion in direction D with f ≤ f Lim and

g < gLimD, a node u that is chosen for expansion will have lb(u) ≤ max{gLimF +

gLimB + ε − 1, f Lim} = f lim 5, and since the f lim is increased only after there are

no nodes left for expansion, lb(u) = f lim = LB. Ergo, GBFHS expands nodes with

minimal lb. In addition, GBFHS terminates as soon as a solution of cost f lim = LB is

found. Thus, C1 and C2 are satisfied and GBFHS is reasonable.

6 Experimental results

We ran experiments on three domains: (1) 50 10-Pancake Puzzle instances with the

GAP heuristic (Helmert 2010). To get a range of heuristic strengths, we also used the

GAP-n heuristics (for n = 1 . . . 9) where the n smallest pancakes are deleted from the

heuristic computation; (2) 50 instances of the 10-disk 4-peg Towers of Hanoi (TOH4)

problem with (8+2) and (6+4) additive PDBs (Felner et al. 2004). (3) Grid-based

pathfinding: 65 maps from Dragon Age Origins (DAO) (Sturtevant 2012), each with

different start and goal points (a total of 1,680 instances).

4Even though well-behavedness was not defined in a general manner when GBFHS was created, the

proof of Barley et al. 2018 is still applicable to the new definition with slight modifications.
5Barley et al. 2018 implicitly assume that ε is an integer ≥ 1.
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Algorithm

10-Pancake TOH-10 Grid

GAP-0 GAP-1 GAP-2 GAP-3 8+2 6+4 DAO

h hlb h hlb h hlb h hlb h hlb h hlb h hlb

BPHA-Alt 26 26 674 665 9,484 6,916 50,804 14,564 26,435 23,666 96,102 69,130 368 319

BPHA-Min 25 21 465 427 6,375 5,615 34,497 28,127 33,770 13,270 159,079 49,128 413 309

BS∗ 25 25 374 682 5,528 5,585 30,687 11,957 18,268 18,351 73,434 63,918 311 496

fMM(1/4) 103 115 5,348 1,985 30,858 11,030 82,396 27,097 22,660 19,899 65,364 57,453 414 407

MM 264 76 2,519 682 5,944 1,684 5,034 2,040 41,407 34,307 89,883 76,852 511 501

fMM(3/4) 64 81 2,098 1,111 15,424 6,002 48,227 13,263 42,452 36,933 173,968 158,290 442 434

Table H.2: Experimental results of average node expansions across domains

Figure H.5 shows the average number of nodes expanded by MM and by MMlb in

the 10-pancake domain across all GAP heuristics. Clearly, adding the lb-propagation

significantly reduces the number of nodes expanded. Using hlb seems to reduce the

number of node expansions for each of the GAP heuristics up until GAP-7, in which

the heuristic effectively becomes h0. In addition, this figure clearly demonstrates the

anomaly of MM; the average number of nodes expanded by MM using heuristics GAP-

2 through GAP-6 is greater than the number of nodes expanded by using heuris-

tics GAP-7 through GAP-9 (notice the “hump-in-the-middle” (Barley et al. 2018)).

By contrast, the hump-in-the-middle of MMlb is much smaller, and in fact not visible

when considering the average number of expansions. However, there were still some

individual problem instances in which MMlb expanded fewer nodes using a weaker

heuristic. This is consistent with Theorem H.1, since we are using a predetermined

tie-breaking policy and not the best possible tie-breaking policy for every instance.

Interestingly, MMlb using ε = 0 demonstrates no hump-in-the-middle, even when con-

Figure H.5: MM vs. MMlb on 10-pancake
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Figure H.6: BHPA-Min vs. BHPA-Minlb on 10-pancake

sidering individual problem instances.

Similarly, Figure H.6 shows the average number of nodes expanded in the 10-

pancake domain across all GAP heuristics, with ε = 1 by a variant of BHPA denoted

by BHPA-Min. BHPA-Min selects the frontier that includes the node with the minimal

f -value. Here too, the lb-propagation improves the search by reducing the number

of nodes expanded. Even though BHPA-Min is well-behaved, and demonstrates no

hump-in-the-middle in the average case, the lb-propagation still improves the algo-

rithm by making it reasonable. This improvement is more evident with GAP-8 and

GAP-9; Despite these GAP heuristics behaving like h0 in the 10-pancake domain, lb-

propagation incorporates gminF + gminB + ε into the f -values of nodes in BHPA-Min,

exposing an additional termination condition, and allowing the search process to halt

sooner.

The average number of node expanded across domains, using ε = 1, appear in

Table H.2. There is one row for each algorithm, and one column for each of the

domains and their heuristics; h denotes the original heuristic, while hlb denotes the

heuristic enhanced by lb-propagation. The algorithms we have tested are BS∗, fMM(p)

using p ∈ {1/4, 1/2, 3/4}, BHPA-Min and BHPA-Alt, another variant of BHPA that

alternates between the frontiers between expansions. The results show that using the

lb-propagation reduces the number of node expansions in most cases by up to a factor

of 4. The lb-propagation particularly excels when the heuristics are weak. In these

cases using hlb always results in fewer node expansions; this is also the case for GAP-4

through GAP-9, which do not appear in the table. Another interesting observation is
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that the hump-in-the-middle is less pronounced in all tested algorithms. BS∗ seems

to be the least affected by the propagation among all algorithms. We posit that the

reason for this is that BS∗ is highly dependent on the search process; since BS∗ selects

a node for expansion from the direction with the smallest open list, minor increments

in heuristic values might cause nodes to be trimmed away, possibly changing the size

balance of the two frontiers. BS∗ also assumes that the heuristic is consistent, which

other algorithms do not. We have also experimented using ε = 0; the results are

similar to the reported ε = 1 results.

Naturally, maintaining and using lb for each node incurs overheads. In the do-

mains we used, g-h-bucketing requires negligible time and space. However, we did

not focus on code optimization, and used naive data-structures. Thus, run times are

not reported here. Improving efficiency with a bucketing scheme or adapting the data

structures used for efficient lb computations by NBS is reserved for future work.

7 Discussion

We have examined the source of the anomaly exhibited by some Bi-HS algorithms,

where using a better heuristic causes the algorithm to expand more nodes. Aim-

ing to improve some algorithms in which the anomaly manifests, the properties of

“well-behavedness" and “reasonableness" were defined, and sufficient conditions (C1,

C2, C3) for these properties were established. These properties provide insights that

lead to the lower-bound propagation scheme (lb-propogation) that can be added to

many existing Bi-HS algorithms, in some cases bestowing upon them these desirable

properties. Empirical results show that modified algorithms exhibit better behav-

ior, alleviating or even eliminating the undesirable “hump-in-the-middle" effect seen

when an algorithm is run with heuristics of varying quality.

The well-behavedness property as defined in this paper ensures that there exists

a tie-breaking policy for which the anomaly would not occur. However, the desired

tie-breaking policy is not specified. It is a non-trivial issue, left for future research,

to define conditions that guarantee a stronger well-behavedness property of an algo-

rithm, such that a dominating heuristic would never cause more nodes to be expanded

than the weaker heuristic using the same tie-breaking policy. Another interesting re-
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search direction is to re-examine the three well-behavedness conditions with respect

to heuristics that are strictly dominating, i.e., h1 > h2.
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Discussion

This work involves the definition, development, and solution of meta-level problems

for several prominent settings. Since there is no single global metareasoning scheme

that can be directly applied to all problem settings, an effort should be invested in de-

signing a meta-level problem tailored to each setting. However, as this work demon-

strates, the effort is often rewarded with improvement of the overall performance.

In papers A and B, the focus was the selection problem, in which an item from a

set of unknown utilities needs to be selected. In this problem, measurements of item

values prior to selection are allowed, each measurement comes at a cost. The aim is

to find a subset of items to measure in order to maximize the expected utility, i.e.,

the utility of the selected item minus the cost of the measurements. In Paper B, we

examined theoretical properties of VOI for the selection problem, and identified cases

of submodularity and supermodularity in which the VOI can be efficiently approxi-

mated. In addition, we have proposed a greedy algorithm which efficiently chooses

a batch of items to measure. In Paper A the selection problem was used as a meta-

level problem for node-selection in MCTS. We have defined Batch Value of Perfect

Information (BVPI) as a generalization of the Value of Perfect Information (VPI) of

Russell and Wefald 1991 for game trees, when considering information gathered for

a set of nodes (items) instead of individual nodes. Using BVPI, we have developed

a selection-scheme in order to select batches of nodes which are likely to provide

meaningful information when measured (i.e., expanded and sampled). This selection

scheme was implemented in several domains and empirically outperformed existing

selection schemes.

A promising future research direction is to adapt the VOI node-selection schemes

to cases where a neural network (NN), rather then simulations, provides the value

estimations (e.g., AlphaZero Silver et al. 2017). These schemes traditionally use node-
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selection methods which are based on variants of UCT, which still try to (incorrectly)

minimize cumulative regret.

Papers C, D, and E involve situated temporal planning. In situated temporal plan-

ning, the planner has to account for time that passes during planning, as some of the

actions expire during the search for a plan. We considered a case where the aim is to

find a plan on time, regardless of the plan’s cost. We also considered a case in which

the aim is to minimize the expected cost (potentially at the risk of not finding a plan

at all). For each case we have defined a metareasoning problem that aims to find a

CPU time allocation schedule to processes, each of which has a distribution over the

time they need to complete their execution, and over deadlines by which they need to

terminate. We have proposed optimal pseudo-polynomial algorithms for the case of

known deadlines when aiming to maximize the probability that at least one process

would complete its execution on time, and to the case where there is only one running

process (and n completed plans) and the goal is to minimize solution cost. For the

general case of each problem setting, we proposed an effective greedy scheme which

balances between the utility gain per time-unit of a process and its urgency (which is

modeled by the damage in utility rate by delaying its execution). The greedy schemes

were evaluated on synthetic data using known families of distributions, as well as on

a distribution constructed by running the OPTIC planner on the RCLL domain. In ad-

dition, our DDA greedy scheme was integrated into the OPTIC planner. The version

of OPTIC that was infused by DDA was able to solve more problems on average.

In the abstract model, we assume the performance profiles of the different pro-

cesses to be independent of one another. However, if this assumption is relaxed and

there could be some dependency between the performance profiles of different pro-

cesses, than the information obtained by executing one process would affect the other

processes. Nevertheless, having dependencies significantly complicates the model as

such dependencies introduce an additional value of information. For example, an

optimal solution in this case could be to allocate time units to a process which is

very unluckily to lead to a valid solution, if the resulted time allocation would pro-

vide more accurate information for the other processes. One option to tackle these

dependencies is to have a belief over performance profiles which can be updated by

time allocations, but this POMDP is much more challenging to solve than the original
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MDP, and the current greedy schemes are not likely to be good approximations for

this case.

The are still many challenges in making situated temporal planning practical. First,

there is still room to improve the different approximation methods used in this work,

e.g., the quality of the performance profiles based on the search information, improv-

ing the runtime of the metareasoning, and even finding better greedy time allocation

schemes. Another key challenge is to relax the Independence assumption between

performance profiles. In the context of the motivating problem of situated temporal

planning, processes are partial plans. Therefore, it is very likely that the performance

profiles of processes obtained from similar partial plans would be dependent. Nev-

ertheless, having dependencies significantly complicates the model, as such depen-

dencies introduce value of information. For example, an optimal solution in the case

of dependent performance profiles could be to allocate time units to a process which

is very unluckily to lead to a valid solution, if the resulting time allocation would

provide more accurate information for the other processes. One option to tackle these

dependencies is to have a belief over performance profiles which can be updated by

allocating time to dependant processes, but this POMDP is much more challenging

to solve than the original MDP, and the current greedy schemes are not likely to be

good approximations for this case. Finally, a promising line of research is to extend

the metareasoning techniques to interleave planning and execution, a setting in which

one is allowed to start executing actions before having a complete plan. In the stan-

dard planning paradigms, a complete plan is required in order to begin execution.

However, realistic schemes allow for interleaving planning and execution, wherein

actions can be executed even during the search for a plan is complete in order to in-

crease the chances of finding and executing a plan on time, or even to find plans with

lower costs.

Paper F was motivated by the AI-birds competition for autonomously playing the

game of angry birds. In this paper we have considered the problem of selecting

pairs of optimization problem instances and algorithms in order to maximize the

expected score under a time limit. We have analyzed the selection problem under

the assumption that the performance profiles (distributions) of the algorithms on the

problem instances ("levels") is known. Even under this simplifying assumption, the
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selection problem is NP-hard. Nonetheless, we have proposed a pseudo-polynomial

method to solve this problem, as well as an efficient greedy scheme which is based

on choosing a pair of problem instance and algorithm that maximize the expected

improvement in score per time unit. On top of being very fast to compute, the greedy

scheme was efficient in an empirical evaluation that used data collected by running the

different agents on many angry-birds level. Thus, this improved-rate greedy scheme

was chosen for our meta-agent. Since the assumptions of known performance profiles

is clearly wrong when playing unseen levels, we have used a learning scheme which

attempts to learn a distribution over performance profiles. This distribution over

distribution is updated (using a Bayesian model) whenever a new observation (a result

obtained by applying an agent to one of the levels) is made. The improved-rate greedy

algorithm combined with the learning scheme was implemented as a meta-agent that

uses agents which have previously participated in AI-birds competitions. This meta-

agent outperformed all individual agents when evaluated on unseen game levels from

past competitions.

Paper G and H have made some contributions to the field of bidirectional heuristic

search (Bi-HS). Paper G introduced the DVCBS algorithm, which maintains an abstract

graph called a DGMX and finds a minimal vertex cover of this graph in order to guide

the search. The process of constricting a DGMX and finding its minimal vertex cover

takes time. However, it is possible to use the information obtained from a DGMX to

expand multiple nodes. As in all meta-level problems, there is a tradeoff between

computation time and getting better information (by computing the DGMX often, or

even after every expansion). Our experiments showed that expanding a cluster of

nodes for every DGMX computation provides a good balance which enabled DVCBS

to empirically outperform existing algorithms in terms of time and node expansions.

Paper H has shown that the lower-bound on solution cost, which can be computed

using a DGMX can be used for making heuristic functions more accurate. This method

of heuristic enhancement was applied to existing algorithms in order to improve their

performance, and even granting some of them the new desirable properties of being

well-behaved and reasonable.

An important take-home message that is evident from this work is that existing

algorithms are able to adapt to new settings by considering a suitable meta-level prob-
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lem that controls their computational actions. While most meta-level problems are (at

least) NP-hard, greedy algorithms tend to provide a good balance between the re-

quired computation time and the solution quality. In several applications the greedy

approach of maximizing utility gain per time unit was empirically successful. In ad-

dition, many meta-level problems are based on performance profiles, or distributions.

The standard methods for obtaining these distributions are to assume that the distri-

bution belong to a known family of distributions, to collected offline statistics and use

them as a prior distribution, or to estimate the distributions using online measures

(e.g., one-step error). An interesting future research direction would be to incorporate

reinforcement learning (RL) methods, and in particular distributional reinforcement

learning (DRL, e.g., Dabney et al. 2018) methods, to learn these distributions. For ex-

ample, for AlphaZero-like applications, instead of using a standard RL method that

returns a single value-estimation for each node, a DRL method could be used in order

to return a value-distribution estimation. By having value-distribution estimations in-

stead of single-value estimations, the VOI-based schemes can be applied. I believe

that a successful combination of learning methods, proven to be rewarding in many

cases, with search and planning techniques, is the key to improve the decision-making

abilities of AI systems. Metareasoning could very well be a methodological way to

bridge the gap between these two approaches.
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  הצהרת תלמיד המחקר עם הגשת עבודת הדוקטור לשיפוט 

  

  

  מצהיר/ה בזאת:   אªי החתום מטה

 

  הצהרת תלמיד המחקר עם הגשת עבודת הדוקטור לשיפוט 

  

  

  : )ןמס א ªא(  :ה בזאת/מצהיר  אªי החתום מטה

  

_X_     חה/ים. חיברתי את חיבורי בעצמי, להוציא עזרת ההדרכה שקיבלתי מאתªמ  

  

_X_     ו פרי מחקריªכלל בעבודה זו היªמתקופת היותי תלמיד/ת מחקרהחומר המדעי ה.  

  

_X_     הªית שאיªכלל חומר מחקרי שהוא פרי שיתוף עם אחרים, למעט עזרה טכª בעבודה

בעבודה ªיסיוªית. לפי כך מצורפת בזאת הצהרה על תרומתי  כוללת ªיתוח תוצאות, הªהוגה  

  למחקר, שאושרה על ידם ומוגשת בהסכמתם.   ותרומת שותפי 

  

  תזה במתכוªת אסופת מאמרים, כוללת מאמרים בהם אªי מחבר ראשון משותף   ___

 (equal contribution)  ,א לצרף הצהרה של המחבר השותף על חלקו בפרסוםª ,במקרה זה .

  ורו  לכך, שמאמר זה לא יוכל להיכלל בתזת מאמרים ªוספת, שהוא יגיש. ואיש 
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